annotate toolboxes/FullBNT-1.0.7/nethelp3.3/rbfprior.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000 (2015-02-10)
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual rbfprior
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> rbfprior
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Create Gaussian prior and output layer mask for RBF.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19 [mask, prior] = rbfprior(rbfunc, nin, nhidden, nout, aw2, ab2)</PRE>
wolffd@0 20
wolffd@0 21
wolffd@0 22 <p><h2>
wolffd@0 23 Description
wolffd@0 24 </h2>
wolffd@0 25 <CODE>[mask, prior] = rbfprior(rbfunc, nin, nhidden, nout, aw2, ab2)</CODE>
wolffd@0 26 generates a vector
wolffd@0 27 <CODE>mask</CODE> that selects only the output
wolffd@0 28 layer weights. This is because most uses of RBF networks in a Bayesian
wolffd@0 29 context have fixed basis functions with the output layer as the only
wolffd@0 30 adjustable parameters. In particular, the Neuroscale output error function
wolffd@0 31 is designed to work only with this mask.
wolffd@0 32
wolffd@0 33 <p>The return value
wolffd@0 34 <CODE>prior</CODE> is a data structure,
wolffd@0 35 with fields <CODE>prior.alpha</CODE> and <CODE>prior.index</CODE>, which
wolffd@0 36 specifies a Gaussian prior distribution for the network weights in an
wolffd@0 37 RBF network. The parameters <CODE>aw2</CODE> and <CODE>ab2</CODE> are all
wolffd@0 38 scalars and represent the regularization coefficients for two groups
wolffd@0 39 of parameters in the network corresponding to
wolffd@0 40 second-layer weights, and second-layer biases
wolffd@0 41 respectively. Then <CODE>prior.alpha</CODE> represents a column vector of
wolffd@0 42 length 2 containing the parameters, and <CODE>prior.index</CODE> is a matrix
wolffd@0 43 specifying which weights belong in each group. Each column has one
wolffd@0 44 element for each weight in the matrix, using the standard ordering as
wolffd@0 45 defined in <CODE>rbfpak</CODE>, and each element is 1 or 0 according to
wolffd@0 46 whether the weight is a member of the corresponding group or not.
wolffd@0 47
wolffd@0 48 <p><h2>
wolffd@0 49 See Also
wolffd@0 50 </h2>
wolffd@0 51 <CODE><a href="rbf.htm">rbf</a></CODE>, <CODE><a href="rbferr.htm">rbferr</a></CODE>, <CODE><a href="rbfgrad.htm">rbfgrad</a></CODE>, <CODE><a href="evidence.htm">evidence</a></CODE><hr>
wolffd@0 52 <b>Pages:</b>
wolffd@0 53 <a href="index.htm">Index</a>
wolffd@0 54 <hr>
wolffd@0 55 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 56
wolffd@0 57
wolffd@0 58 </body>
wolffd@0 59 </html>