annotate toolboxes/FullBNT-1.0.7/nethelp3.3/olgd.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual olgd
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> olgd
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 On-line gradient descent optimization.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Description
wolffd@0 17 </h2>
wolffd@0 18 <CODE>[net, options, errlog, pointlog] = olgd(net, options, x, t)</CODE> uses
wolffd@0 19 on-line gradient descent to find a local minimum of the error function for the
wolffd@0 20 network
wolffd@0 21 <CODE>net</CODE> computed on the input data <CODE>x</CODE> and target values
wolffd@0 22 <CODE>t</CODE>. A log of the error values
wolffd@0 23 after each cycle is (optionally) returned in <CODE>errlog</CODE>, and a log
wolffd@0 24 of the points visited is (optionally) returned in <CODE>pointlog</CODE>.
wolffd@0 25 Because the gradient is computed on-line (i.e. after each pattern)
wolffd@0 26 this can be quite inefficient in Matlab.
wolffd@0 27
wolffd@0 28 <p>The error function value at final weight vector is returned
wolffd@0 29 in <CODE>options(8)</CODE>.
wolffd@0 30
wolffd@0 31 <p>The optional parameters have the following interpretations.
wolffd@0 32
wolffd@0 33 <p><CODE>options(1)</CODE> is set to 1 to display error values; also logs error
wolffd@0 34 values in the return argument <CODE>errlog</CODE>, and the points visited
wolffd@0 35 in the return argument <CODE>pointslog</CODE>. If <CODE>options(1)</CODE> is set to 0,
wolffd@0 36 then only warning messages are displayed. If <CODE>options(1)</CODE> is -1,
wolffd@0 37 then nothing is displayed.
wolffd@0 38
wolffd@0 39 <p><CODE>options(2)</CODE> is the precision required for the value
wolffd@0 40 of <CODE>x</CODE> at the solution. If the absolute difference between
wolffd@0 41 the values of <CODE>x</CODE> between two successive steps is less than
wolffd@0 42 <CODE>options(2)</CODE>, then this condition is satisfied.
wolffd@0 43
wolffd@0 44 <p><CODE>options(3)</CODE> is the precision required of the objective
wolffd@0 45 function at the solution. If the absolute difference between the
wolffd@0 46 error functions between two successive steps is less than
wolffd@0 47 <CODE>options(3)</CODE>, then this condition is satisfied.
wolffd@0 48 Both this and the previous condition must be
wolffd@0 49 satisfied for termination. Note that testing the function value at each
wolffd@0 50 iteration roughly halves the speed of the algorithm.
wolffd@0 51
wolffd@0 52 <p><CODE>options(5)</CODE> determines whether the patterns are sampled randomly
wolffd@0 53 with replacement. If it is 0 (the default), then patterns are sampled
wolffd@0 54 in order.
wolffd@0 55
wolffd@0 56 <p><CODE>options(6)</CODE> determines if the learning rate decays. If it is 1
wolffd@0 57 then the learning rate decays at a rate of <CODE>1/t</CODE>. If it is 0
wolffd@0 58 (the default) then the learning rate is constant.
wolffd@0 59
wolffd@0 60 <p><CODE>options(9)</CODE> should be set to 1 to check the user defined gradient
wolffd@0 61 function.
wolffd@0 62
wolffd@0 63 <p><CODE>options(10)</CODE> returns the total number of function evaluations (including
wolffd@0 64 those in any line searches).
wolffd@0 65
wolffd@0 66 <p><CODE>options(11)</CODE> returns the total number of gradient evaluations.
wolffd@0 67
wolffd@0 68 <p><CODE>options(14)</CODE> is the maximum number of iterations (passes through
wolffd@0 69 the complete pattern set); default 100.
wolffd@0 70
wolffd@0 71 <p><CODE>options(17)</CODE> is the momentum; default 0.5.
wolffd@0 72
wolffd@0 73 <p><CODE>options(18)</CODE> is the learning rate; default 0.01.
wolffd@0 74
wolffd@0 75 <p><h2>
wolffd@0 76 Examples
wolffd@0 77 </h2>
wolffd@0 78 The following example performs on-line gradient descent on an MLP with
wolffd@0 79 random sampling from the pattern set.
wolffd@0 80 <PRE>
wolffd@0 81
wolffd@0 82 net = mlp(5, 3, 1, 'linear');
wolffd@0 83 options = foptions;
wolffd@0 84 options(18) = 0.01;
wolffd@0 85 options(5) = 1;
wolffd@0 86 net = olgd(net, options, x, t);
wolffd@0 87 </PRE>
wolffd@0 88
wolffd@0 89
wolffd@0 90 <p><h2>
wolffd@0 91 See Also
wolffd@0 92 </h2>
wolffd@0 93 <CODE><a href="graddesc.htm">graddesc</a></CODE><hr>
wolffd@0 94 <b>Pages:</b>
wolffd@0 95 <a href="index.htm">Index</a>
wolffd@0 96 <hr>
wolffd@0 97 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 98
wolffd@0 99
wolffd@0 100 </body>
wolffd@0 101 </html>