annotate toolboxes/FullBNT-1.0.7/nethelp3.3/mlpprior.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual mlpprior
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> mlpprior
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Create Gaussian prior for mlp.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19 prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2)</PRE>
wolffd@0 20
wolffd@0 21
wolffd@0 22 <p><h2>
wolffd@0 23 Description
wolffd@0 24 </h2>
wolffd@0 25 <CODE>prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2)</CODE>
wolffd@0 26 generates a data structure
wolffd@0 27 <CODE>prior</CODE>, with fields <CODE>prior.alpha</CODE> and <CODE>prior.index</CODE>, which
wolffd@0 28 specifies a Gaussian prior distribution for the network weights in a
wolffd@0 29 two-layer feedforward network. Two different cases are possible. In
wolffd@0 30 the first case, <CODE>aw1</CODE>, <CODE>ab1</CODE>, <CODE>aw2</CODE> and <CODE>ab2</CODE> are all
wolffd@0 31 scalars and represent the regularization coefficients for four groups
wolffd@0 32 of parameters in the network corresponding to first-layer weights,
wolffd@0 33 first-layer biases, second-layer weights, and second-layer biases
wolffd@0 34 respectively. Then <CODE>prior.alpha</CODE> represents a column vector of
wolffd@0 35 length 4 containing the parameters, and <CODE>prior.index</CODE> is a matrix
wolffd@0 36 specifying which weights belong in each group. Each column has one
wolffd@0 37 element for each weight in the matrix, using the standard ordering as
wolffd@0 38 defined in <CODE>mlppak</CODE>, and each element is 1 or 0 according to
wolffd@0 39 whether the weight is a member of the corresponding group or not. In
wolffd@0 40 the second case the parameter <CODE>aw1</CODE> is a vector of length equal to
wolffd@0 41 the number of inputs in the network, and the corresponding matrix
wolffd@0 42 <CODE>prior.index</CODE> now partitions the first-layer weights into groups
wolffd@0 43 corresponding to the weights fanning out of each input unit. This
wolffd@0 44 prior is appropriate for the technique of automatic relevance
wolffd@0 45 determination.
wolffd@0 46
wolffd@0 47 <p><h2>
wolffd@0 48 See Also
wolffd@0 49 </h2>
wolffd@0 50 <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlperr.htm">mlperr</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE>, <CODE><a href="evidence.htm">evidence</a></CODE><hr>
wolffd@0 51 <b>Pages:</b>
wolffd@0 52 <a href="index.htm">Index</a>
wolffd@0 53 <hr>
wolffd@0 54 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 55
wolffd@0 56
wolffd@0 57 </body>
wolffd@0 58 </html>