annotate toolboxes/FullBNT-1.0.7/nethelp3.3/knn.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual knn
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> knn
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Creates a K-nearest-neighbour classifier.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19
wolffd@0 20 net = knn(nin, nout, k, tr_in, tr_targets)
wolffd@0 21 </PRE>
wolffd@0 22
wolffd@0 23
wolffd@0 24 <p><h2>
wolffd@0 25 Description
wolffd@0 26 </h2>
wolffd@0 27 <CODE>net = knn(nin, nout, k, tr_in, tr_targets)</CODE> creates a KNN model <CODE>net</CODE>
wolffd@0 28 with input dimension <CODE>nin</CODE>, output dimension <CODE>nout</CODE> and <CODE>k</CODE>
wolffd@0 29 neighbours. The training data is also stored in the data structure and the
wolffd@0 30 targets are assumed to be using a 1-of-N coding.
wolffd@0 31
wolffd@0 32 <p>The fields in <CODE>net</CODE> are
wolffd@0 33 <PRE>
wolffd@0 34
wolffd@0 35 type = 'knn'
wolffd@0 36 nin = number of inputs
wolffd@0 37 nout = number of outputs
wolffd@0 38 tr_in = training input data
wolffd@0 39 tr_targets = training target data
wolffd@0 40 </PRE>
wolffd@0 41
wolffd@0 42
wolffd@0 43 <p><h2>
wolffd@0 44 See Also
wolffd@0 45 </h2>
wolffd@0 46 <CODE><a href="kmeans.htm">kmeans</a></CODE>, <CODE><a href="knnfwd.htm">knnfwd</a></CODE><hr>
wolffd@0 47 <b>Pages:</b>
wolffd@0 48 <a href="index.htm">Index</a>
wolffd@0 49 <hr>
wolffd@0 50 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 51
wolffd@0 52
wolffd@0 53 </body>
wolffd@0 54 </html>