Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/nethelp3.3/demglm2.htm @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 <html> |
wolffd@0 | 2 <head> |
wolffd@0 | 3 <title> |
wolffd@0 | 4 Netlab Reference Manual demglm2 |
wolffd@0 | 5 </title> |
wolffd@0 | 6 </head> |
wolffd@0 | 7 <body> |
wolffd@0 | 8 <H1> demglm2 |
wolffd@0 | 9 </H1> |
wolffd@0 | 10 <h2> |
wolffd@0 | 11 Purpose |
wolffd@0 | 12 </h2> |
wolffd@0 | 13 Demonstrate simple classification using a generalized linear model. |
wolffd@0 | 14 |
wolffd@0 | 15 <p><h2> |
wolffd@0 | 16 Synopsis |
wolffd@0 | 17 </h2> |
wolffd@0 | 18 <PRE> |
wolffd@0 | 19 demglm1</PRE> |
wolffd@0 | 20 |
wolffd@0 | 21 |
wolffd@0 | 22 <p><h2> |
wolffd@0 | 23 Description |
wolffd@0 | 24 </h2> |
wolffd@0 | 25 |
wolffd@0 | 26 The problem consists of a two dimensional input |
wolffd@0 | 27 matrix <CODE>data</CODE> and a vector of classifications <CODE>t</CODE>. The data is |
wolffd@0 | 28 generated from three Gaussian clusters, and a generalized linear model |
wolffd@0 | 29 with softmax output is trained using iterative reweighted least squares. |
wolffd@0 | 30 A plot of the data together with regions shaded by the classification |
wolffd@0 | 31 given by the network is generated. |
wolffd@0 | 32 |
wolffd@0 | 33 <p><h2> |
wolffd@0 | 34 See Also |
wolffd@0 | 35 </h2> |
wolffd@0 | 36 <CODE><a href="demglm1.htm">demglm1</a></CODE>, <CODE><a href="glm.htm">glm</a></CODE>, <CODE><a href="glmtrain.htm">glmtrain</a></CODE><hr> |
wolffd@0 | 37 <b>Pages:</b> |
wolffd@0 | 38 <a href="index.htm">Index</a> |
wolffd@0 | 39 <hr> |
wolffd@0 | 40 <p>Copyright (c) Ian T Nabney (1996-9) |
wolffd@0 | 41 |
wolffd@0 | 42 |
wolffd@0 | 43 </body> |
wolffd@0 | 44 </html> |