Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/bnt/learning/learn_params_dbn.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 function bnet = learn_params_dbn(bnet, data) |
wolffd@0 | 2 % LEARN_PARAM_DBN Estimate params of a DBN for a fully observed model |
wolffd@0 | 3 % bnet = learn_params_dbn(bnet, data) |
wolffd@0 | 4 % |
wolffd@0 | 5 % data(i,t) is the value of node i in slice t (can be a cell array) |
wolffd@0 | 6 % We currently assume there is a single time series |
wolffd@0 | 7 % |
wolffd@0 | 8 % We set bnet.CPD{i} to its ML/MAP estimate. |
wolffd@0 | 9 % |
wolffd@0 | 10 % Currently we assume each node in the first 2 slices has its own CPD (no param tying); |
wolffd@0 | 11 % all nodes in slices >2 share their params with slice 2 as usual. |
wolffd@0 | 12 |
wolffd@0 | 13 [ss T] = size(data); |
wolffd@0 | 14 |
wolffd@0 | 15 % slice 1 |
wolffd@0 | 16 for j=1:ss |
wolffd@0 | 17 if adjustable_CPD(bnet.CPD{j}) |
wolffd@0 | 18 fam = family(bnet.dag,j); |
wolffd@0 | 19 bnet.CPD{j} = learn_params(bnet.CPD{j}, data(fam,1)); |
wolffd@0 | 20 end |
wolffd@0 | 21 end |
wolffd@0 | 22 |
wolffd@0 | 23 |
wolffd@0 | 24 % slices 2:T |
wolffd@0 | 25 % data2(:,t) contains [data(:,t-1); data(:,t)]. |
wolffd@0 | 26 % Then we extract out the rows corresponding to the parents in the current and previous slice. |
wolffd@0 | 27 data2 = [data(:,1:T-1); |
wolffd@0 | 28 data(:,2:T)]; |
wolffd@0 | 29 for j=1:ss |
wolffd@0 | 30 j2 = j+ss; |
wolffd@0 | 31 if adjustable_CPD(bnet.CPD{j2}) |
wolffd@0 | 32 fam = family(bnet.dag,j2); |
wolffd@0 | 33 bnet.CPD{j2} = learn_params(bnet.CPD{j2}, data2(fam,:)); |
wolffd@0 | 34 end |
wolffd@0 | 35 end |
wolffd@0 | 36 |