wolffd@0
|
1 function bnet = bayes_update_params(bnet, cases, clamped)
|
wolffd@0
|
2 % BAYES_UPDATE_PARAMS Bayesian parameter updating given completely observed data
|
wolffd@0
|
3 % bnet = bayes_update_params(bnet, cases, clamped)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % If there is a missing data, you must use EM.
|
wolffd@0
|
6 % cases(i,m) is the value assigned to node i in case m (this can also be a cell array).
|
wolffd@0
|
7 % clamped(i,m) = 1 if node i was set by intervention in case m (default: clamped = zeros).
|
wolffd@0
|
8 % Clamped nodes are not updated.
|
wolffd@0
|
9 % If there is a single case, clamped is a list of the clamped nodes, not a bit vector.
|
wolffd@0
|
10
|
wolffd@0
|
11
|
wolffd@0
|
12 %if iscell(cases), usecell = 1; else usecell = 0; end
|
wolffd@0
|
13
|
wolffd@0
|
14 n = length(bnet.dag);
|
wolffd@0
|
15 ncases = size(cases, 2);
|
wolffd@0
|
16 if n ~= size(cases, 1)
|
wolffd@0
|
17 error('data must be of size nnodes * ncases');
|
wolffd@0
|
18 end
|
wolffd@0
|
19
|
wolffd@0
|
20 if ncases == 1 % clamped is a list of nodes
|
wolffd@0
|
21 if nargin < 3, clamped = []; end
|
wolffd@0
|
22 clamp_set = clamped;
|
wolffd@0
|
23 clamped = zeros(n,1);
|
wolffd@0
|
24 clamped(clamp_set) = 1;
|
wolffd@0
|
25 else % each row of clamped is a bit vector
|
wolffd@0
|
26 if nargin < 3, clamped = zeros(n,ncases); end
|
wolffd@0
|
27 end
|
wolffd@0
|
28
|
wolffd@0
|
29 for i=1:n
|
wolffd@0
|
30 e = bnet.equiv_class(i);
|
wolffd@0
|
31 if adjustable_CPD(bnet.CPD{e})
|
wolffd@0
|
32 u = find(clamped(i,:)==0);
|
wolffd@0
|
33 ps = parents(bnet.dag, i);
|
wolffd@0
|
34 bnet.CPD{e} = bayes_update_params(bnet.CPD{e}, cases(i,u), cases(ps,u));
|
wolffd@0
|
35 end
|
wolffd@0
|
36 end
|
wolffd@0
|
37
|
wolffd@0
|
38
|