annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/softmax1.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % Check that softmax works with a simple classification demo.
wolffd@0 2 % Based on netlab's demglm2
wolffd@0 3 % X -> Q where X is an input node, and Q is a softmax
wolffd@0 4
wolffd@0 5 rand('state', 0);
wolffd@0 6 randn('state', 0);
wolffd@0 7
wolffd@0 8 % Check inference
wolffd@0 9
wolffd@0 10 input_dim = 2;
wolffd@0 11 num_classes = 3;
wolffd@0 12 IRLS_iter = 3;
wolffd@0 13
wolffd@0 14 net = glm(input_dim, num_classes, 'softmax');
wolffd@0 15
wolffd@0 16 dag = zeros(2);
wolffd@0 17 dag(1,2) = 1;
wolffd@0 18 discrete_nodes = [2];
wolffd@0 19 bnet = mk_bnet(dag, [input_dim num_classes], 'discrete', discrete_nodes, 'observed', 1);
wolffd@0 20 bnet.CPD{1} = root_CPD(bnet, 1);
wolffd@0 21 clamped = 0;
wolffd@0 22 bnet.CPD{2} = softmax_CPD(bnet, 2, net.w1, net.b1, clamped, IRLS_iter);
wolffd@0 23
wolffd@0 24 engine = jtree_inf_engine(bnet);
wolffd@0 25
wolffd@0 26 x = rand(1, input_dim);
wolffd@0 27 q = glmfwd(net, x);
wolffd@0 28
wolffd@0 29 [engine, ll] = enter_evidence(engine, {x, []});
wolffd@0 30 m = marginal_nodes(engine, 2);
wolffd@0 31 assert(approxeq(m.T(:), q(:)));
wolffd@0 32
wolffd@0 33
wolffd@0 34 % Check learning
wolffd@0 35 % We use EM, but in fact there is no hidden data.
wolffd@0 36 % The M step will call IRLS on the softmax node.
wolffd@0 37
wolffd@0 38 % Generate data from three classes in 2d
wolffd@0 39 input_dim = 2;
wolffd@0 40 num_classes = 3;
wolffd@0 41
wolffd@0 42 % Fix seeds for reproducible results
wolffd@0 43 randn('state', 42);
wolffd@0 44 rand('state', 42);
wolffd@0 45
wolffd@0 46 ndata = 10;
wolffd@0 47 % Generate mixture of three Gaussians in two dimensional space
wolffd@0 48 data = randn(ndata, input_dim);
wolffd@0 49 targets = zeros(ndata, 3);
wolffd@0 50
wolffd@0 51 % Priors for the clusters
wolffd@0 52 prior(1) = 0.4;
wolffd@0 53 prior(2) = 0.3;
wolffd@0 54 prior(3) = 0.3;
wolffd@0 55
wolffd@0 56 % Cluster centres
wolffd@0 57 c = [2.0, 2.0; 0.0, 0.0; 1, -1];
wolffd@0 58
wolffd@0 59 ndata1 = prior(1)*ndata;
wolffd@0 60 ndata2 = (prior(1) + prior(2))*ndata;
wolffd@0 61 % Put first cluster at (2, 2)
wolffd@0 62 data(1:ndata1, 1) = data(1:ndata1, 1) * 0.5 + c(1,1);
wolffd@0 63 data(1:ndata1, 2) = data(1:ndata1, 2) * 0.5 + c(1,2);
wolffd@0 64 targets(1:ndata1, 1) = 1;
wolffd@0 65
wolffd@0 66 % Leave second cluster at (0,0)
wolffd@0 67 data((ndata1 + 1):ndata2, :) = ...
wolffd@0 68 data((ndata1 + 1):ndata2, :);
wolffd@0 69 targets((ndata1+1):ndata2, 2) = 1;
wolffd@0 70
wolffd@0 71 data((ndata2+1):ndata, 1) = data((ndata2+1):ndata,1) *0.6 + c(3, 1);
wolffd@0 72 data((ndata2+1):ndata, 2) = data((ndata2+1):ndata,2) *0.6 + c(3, 2);
wolffd@0 73 targets((ndata2+1):ndata, 3) = 1;
wolffd@0 74
wolffd@0 75
wolffd@0 76 if 0
wolffd@0 77 ndata = 1;
wolffd@0 78 data = x;
wolffd@0 79 targets = [1 0 0];
wolffd@0 80 end
wolffd@0 81
wolffd@0 82 options = foptions;
wolffd@0 83 options(1) = -1; % verbose
wolffd@0 84 options(14) = IRLS_iter;
wolffd@0 85 [net2, options2] = glmtrain(net, options, data, targets);
wolffd@0 86 net2.ll = options2(8); % type 'help foptions' for details
wolffd@0 87
wolffd@0 88 cases = cell(2, ndata);
wolffd@0 89 for l=1:ndata
wolffd@0 90 q = find(targets(l,:)==1);
wolffd@0 91 x = data(l,:);
wolffd@0 92 cases{1,l} = x(:);
wolffd@0 93 cases{2,l} = q;
wolffd@0 94 end
wolffd@0 95
wolffd@0 96 max_iter = 2; % we have complete observability, so 1 iter is enough
wolffd@0 97 [bnet2, ll2] = learn_params_em(engine, cases, max_iter);
wolffd@0 98
wolffd@0 99 w = get_field(bnet2.CPD{2},'weights');
wolffd@0 100 b = get_field(bnet2.CPD{2},'offset')';
wolffd@0 101
wolffd@0 102 w
wolffd@0 103 net2.w1
wolffd@0 104
wolffd@0 105 b
wolffd@0 106 net2.b1
wolffd@0 107
wolffd@0 108 % assert(approxeq(net2.ll, ll2)); % glmtrain returns ll after final M step, learn_params before
wolffd@0 109