Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/discrete1.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 % Compare various inference engines on the following network (from Jensen (1996) p84 fig 4.17) |
wolffd@0 | 2 % 1 |
wolffd@0 | 3 % / | \ |
wolffd@0 | 4 % 2 3 4 |
wolffd@0 | 5 % | | | |
wolffd@0 | 6 % 5 6 7 |
wolffd@0 | 7 % \/ \/ |
wolffd@0 | 8 % 8 9 |
wolffd@0 | 9 % where all arcs point downwards |
wolffd@0 | 10 |
wolffd@0 | 11 N = 9; |
wolffd@0 | 12 dag = zeros(N,N); |
wolffd@0 | 13 dag(1,2)=1; dag(1,3)=1; dag(1,4)=1; |
wolffd@0 | 14 dag(2,5)=1; dag(3,6)=1; dag(4,7)=1; |
wolffd@0 | 15 dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1; |
wolffd@0 | 16 |
wolffd@0 | 17 dnodes = 1:N; |
wolffd@0 | 18 false = 1; true = 2; |
wolffd@0 | 19 ns = 2*ones(1,N); % binary nodes |
wolffd@0 | 20 |
wolffd@0 | 21 onodes = [2 7]; |
wolffd@0 | 22 bnet = mk_bnet(dag, ns, 'observed', onodes); |
wolffd@0 | 23 % use random params |
wolffd@0 | 24 for i=1:N |
wolffd@0 | 25 bnet.CPD{i} = tabular_CPD(bnet, i); |
wolffd@0 | 26 end |
wolffd@0 | 27 |
wolffd@0 | 28 query = [3]; |
wolffd@0 | 29 engine = {}; |
wolffd@0 | 30 engine{end+1} = jtree_inf_engine(bnet); |
wolffd@0 | 31 engine{end+1} = var_elim_inf_engine(bnet); |
wolffd@0 | 32 %engine{end+1} = global_joint_inf_engine(bnet); |
wolffd@0 | 33 % global joint is designed for limids because does not normalize |
wolffd@0 | 34 |
wolffd@0 | 35 %engine{end+1} = enumerative_inf_engine(bnet); |
wolffd@0 | 36 %engine{end+1} = jtree_onepass_inf_engine(bnet, query, onodes); |
wolffd@0 | 37 |
wolffd@0 | 38 maximize = 0; % jtree_ndx crashes on max-prop |
wolffd@0 | 39 [err, time] = cmp_inference_static(bnet, engine, 'maximize', maximize); |
wolffd@0 | 40 |