annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/StructLearn/model_select2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % Online Bayesian model selection demo.
wolffd@0 2
wolffd@0 3 % We generate data from the model A->B
wolffd@0 4 % and compute the posterior prob of all 3 dags on 2 nodes:
wolffd@0 5 % (1) A B, (2) A <- B , (3) A -> B
wolffd@0 6 % Models 2 and 3 are Markov equivalent, and therefore indistinguishable from
wolffd@0 7 % observational data alone.
wolffd@0 8
wolffd@0 9 % We control the dependence of B on A by setting
wolffd@0 10 % P(B|A) = 0.5 - epislon and vary epsilon
wolffd@0 11 % as in Koller & Friedman book p512
wolffd@0 12
wolffd@0 13 % ground truth
wolffd@0 14 N = 2;
wolffd@0 15 dag = zeros(N);
wolffd@0 16 A = 1; B = 2;
wolffd@0 17 dag(A,B) = 1;
wolffd@0 18
wolffd@0 19 ntrials = 100;
wolffd@0 20 ns = 2*ones(1,N);
wolffd@0 21 true_bnet = mk_bnet(dag, ns);
wolffd@0 22 true_bnet.CPD{1} = tabular_CPD(true_bnet, 1, [0.5 0.5]);
wolffd@0 23
wolffd@0 24 % hypothesis space
wolffd@0 25 G = mk_all_dags(N);
wolffd@0 26 nhyp = length(G);
wolffd@0 27 hyp_bnet = cell(1, nhyp);
wolffd@0 28 for h=1:nhyp
wolffd@0 29 hyp_bnet{h} = mk_bnet(G{h}, ns);
wolffd@0 30 for i=1:N
wolffd@0 31 % We must set the CPTs to the mean of the prior for sequential log_marg_lik to be correct
wolffd@0 32 % The BDeu prior is score equivalent, so models 2,3 will be indistinguishable.
wolffd@0 33 % The uniform Dirichlet prior is not score equivalent...
wolffd@0 34 fam = family(G{h}, i);
wolffd@0 35 hyp_bnet{h}.CPD{i}= tabular_CPD(hyp_bnet{h}, i, 'prior_type', 'dirichlet', ...
wolffd@0 36 'CPT', 'unif');
wolffd@0 37 end
wolffd@0 38 end
wolffd@0 39
wolffd@0 40 clf
wolffd@0 41 seeds = 1:3;
wolffd@0 42 expt = 1;
wolffd@0 43 for seedi=1:length(seeds)
wolffd@0 44 seed = seeds(seedi);
wolffd@0 45 rand('state', seed);
wolffd@0 46 randn('state', seed);
wolffd@0 47
wolffd@0 48 es = [0.05 0.1 0.15 0.2];
wolffd@0 49 for ei=1:length(es)
wolffd@0 50 e = es(ei);
wolffd@0 51 true_bnet.CPD{2} = tabular_CPD(true_bnet, 2, [0.5+e 0.5-e; 0.5-e 0.5+e]);
wolffd@0 52
wolffd@0 53 prior = normalise(ones(1, nhyp));
wolffd@0 54 hyp_w = zeros(ntrials+1, nhyp);
wolffd@0 55 hyp_w(1,:) = prior(:)';
wolffd@0 56 LL = zeros(1, nhyp);
wolffd@0 57 ll = zeros(1, nhyp);
wolffd@0 58 for t=1:ntrials
wolffd@0 59 ev = cell2num(sample_bnet(true_bnet));
wolffd@0 60 for i=1:nhyp
wolffd@0 61 ll(i) = log_marg_lik_complete(hyp_bnet{i}, ev);
wolffd@0 62 hyp_bnet{i} = bayes_update_params(hyp_bnet{i}, ev);
wolffd@0 63 end
wolffd@0 64 prior = normalise(prior .* exp(ll));
wolffd@0 65 LL = LL + ll;
wolffd@0 66 hyp_w(t+1,:) = prior;
wolffd@0 67 end
wolffd@0 68
wolffd@0 69 % Plot posterior model probabilities
wolffd@0 70 % Red = model 1 (no arcs), blue/green = models 2/3 (1 arc)
wolffd@0 71 % Blue = model 2 (2->1)
wolffd@0 72 % Green = model 3 (1->2, "ground truth")
wolffd@0 73
wolffd@0 74 subplot2(length(seeds), length(es), seedi, ei);
wolffd@0 75 m = size(hyp_w,1);
wolffd@0 76 h=plot(1:m, hyp_w(:,1), 'r-', 1:m, hyp_w(:,2), 'b-.', 1:m, hyp_w(:,3), 'g:');
wolffd@0 77 axis([0 m 0 1])
wolffd@0 78 %title('model posterior vs. time')
wolffd@0 79 title(sprintf('e=%3.2f, seed=%d', e, seed));
wolffd@0 80 drawnow
wolffd@0 81 expt = expt + 1;
wolffd@0 82 end
wolffd@0 83 end