annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/SCG/scg3.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % Compare various inference engines on the following network (from Jensen (1996) p84 fig 4.17)
wolffd@0 2 % 1
wolffd@0 3 % / | \
wolffd@0 4 % 2 3 4
wolffd@0 5 % | | |
wolffd@0 6 % 5 6 7
wolffd@0 7 % \/ \/
wolffd@0 8 % 8 9
wolffd@0 9 % where all arcs point downwards
wolffd@0 10
wolffd@0 11 N = 9;
wolffd@0 12 dag = zeros(N,N);
wolffd@0 13 dag(1,2)=1; dag(1,3)=1; dag(1,4)=1;
wolffd@0 14 dag(2,5)=1; dag(3,6)=1; dag(4,7)=1;
wolffd@0 15 dag(5,8)=1; dag(6,8)=1; dag(6,9)=1; dag(7,9) = 1;
wolffd@0 16
wolffd@0 17 gauss = 1;
wolffd@0 18 if gauss
wolffd@0 19 ns = ones(1,N); % scalar nodes
wolffd@0 20 ns(1) = 2;
wolffd@0 21 ns(9) = 3;
wolffd@0 22 dnodes = [];
wolffd@0 23 else
wolffd@0 24 ns = 2*ones(1,N); % binary nodes
wolffd@0 25 dnodes = 1:N;
wolffd@0 26 end
wolffd@0 27
wolffd@0 28 bnet = mk_bnet(dag, ns, 'discrete', dnodes);
wolffd@0 29 % use random params
wolffd@0 30 for i=1:N
wolffd@0 31 if gauss
wolffd@0 32 bnet.CPD{i} = gaussian_CPD(bnet, i);
wolffd@0 33 else
wolffd@0 34 bnet.CPD{i} = tabular_CPD(bnet, i);
wolffd@0 35 end
wolffd@0 36 end
wolffd@0 37
wolffd@0 38 engines = {};
wolffd@0 39 engines{1} = jtree_inf_engine(bnet);
wolffd@0 40 engines{2} = stab_cond_gauss_inf_engine(bnet);
wolffd@0 41
wolffd@0 42 [err, time] = cmp_inference_static(bnet, engines);