wolffd@0
|
1 % Like a durational HMM, except we use soft evidence on the observed nodes.
|
wolffd@0
|
2 % Should give the same results as HSMM/test_mgram2.
|
wolffd@0
|
3
|
wolffd@0
|
4 past = 1;
|
wolffd@0
|
5 % If past=1, P(Yt|Qt=j,Dt=d) = P(y_{t-d+1:t}|j)
|
wolffd@0
|
6 % If past=0, P(Yt|Qt=j,Dt=d) = P(y_{t:t+d-1}|j) - future evidence
|
wolffd@0
|
7
|
wolffd@0
|
8 words = {'the', 't', 'h', 'e'};
|
wolffd@0
|
9 data = 'the';
|
wolffd@0
|
10 nwords = length(words);
|
wolffd@0
|
11 word_len = zeros(1, nwords);
|
wolffd@0
|
12 word_prob = normalise(ones(1,nwords));
|
wolffd@0
|
13 word_logprob = log(word_prob);
|
wolffd@0
|
14 for wi=1:nwords
|
wolffd@0
|
15 word_len(wi)=length(words{wi});
|
wolffd@0
|
16 end
|
wolffd@0
|
17 D = max(word_len);
|
wolffd@0
|
18
|
wolffd@0
|
19
|
wolffd@0
|
20 alphasize = 26*2;
|
wolffd@0
|
21 data = letter2num(data);
|
wolffd@0
|
22 T = length(data);
|
wolffd@0
|
23
|
wolffd@0
|
24 % node numbers
|
wolffd@0
|
25 W = 1; % top level state = word id
|
wolffd@0
|
26 L = 2; % bottom level state = letter position within word
|
wolffd@0
|
27 F = 3;
|
wolffd@0
|
28 O = 4;
|
wolffd@0
|
29
|
wolffd@0
|
30 ss = 4;
|
wolffd@0
|
31 intra = zeros(ss,ss);
|
wolffd@0
|
32 intra(W,[F L O])=1;
|
wolffd@0
|
33 intra(L,[O F])=1;
|
wolffd@0
|
34
|
wolffd@0
|
35 inter = zeros(ss,ss);
|
wolffd@0
|
36 inter(W,W)=1;
|
wolffd@0
|
37 inter(L,L)=1;
|
wolffd@0
|
38 inter(F,[W L O])=1;
|
wolffd@0
|
39
|
wolffd@0
|
40 % node sizes
|
wolffd@0
|
41 ns = zeros(1,ss);
|
wolffd@0
|
42 ns(W) = nwords;
|
wolffd@0
|
43 ns(L) = D;
|
wolffd@0
|
44 ns(F) = 2;
|
wolffd@0
|
45 ns(O) = alphasize;
|
wolffd@0
|
46 ns2 = [ns ns];
|
wolffd@0
|
47
|
wolffd@0
|
48 % Make the DBN
|
wolffd@0
|
49 bnet = mk_dbn(intra, inter, ns, 'observed', O);
|
wolffd@0
|
50 eclass = bnet.equiv_class;
|
wolffd@0
|
51
|
wolffd@0
|
52 % uniform start distrib over words, uniform trans mat
|
wolffd@0
|
53 Wstart = normalise(ones(1,nwords));
|
wolffd@0
|
54 Wtrans = mk_stochastic(ones(nwords,nwords));
|
wolffd@0
|
55 %Wtrans = ones(nwords,nwords);
|
wolffd@0
|
56
|
wolffd@0
|
57 % always start in state d = length(word) for each bottom level HMM
|
wolffd@0
|
58 Lstart = zeros(nwords, D);
|
wolffd@0
|
59 for i=1:nwords
|
wolffd@0
|
60 l = length(words{i});
|
wolffd@0
|
61 Lstart(i,l)=1;
|
wolffd@0
|
62 end
|
wolffd@0
|
63
|
wolffd@0
|
64 % make downcounters
|
wolffd@0
|
65 RLtrans = mk_rightleft_transmat(D, 0); % 0 self loop prob
|
wolffd@0
|
66 Ltrans = repmat(RLtrans, [1 1 nwords]);
|
wolffd@0
|
67
|
wolffd@0
|
68 % Finish when downcoutner = 1
|
wolffd@0
|
69 Fprob = zeros(nwords, D, 2);
|
wolffd@0
|
70 Fprob(:,1,2)=1;
|
wolffd@0
|
71 Fprob(:,2:end,1)=1;
|
wolffd@0
|
72
|
wolffd@0
|
73
|
wolffd@0
|
74 % Define CPDs for slice 1
|
wolffd@0
|
75 bnet.CPD{eclass(W,1)} = tabular_CPD(bnet, W, 'CPT', Wstart);
|
wolffd@0
|
76 bnet.CPD{eclass(L,1)} = tabular_CPD(bnet, L, 'CPT', Lstart);
|
wolffd@0
|
77 bnet.CPD{eclass(F,1)} = tabular_CPD(bnet, F, 'CPT', Fprob);
|
wolffd@0
|
78
|
wolffd@0
|
79
|
wolffd@0
|
80 % Define CPDs for slice 2
|
wolffd@0
|
81 bnet.CPD{eclass(W,2)} = hhmmQ_CPD(bnet, W+ss, 'Fbelow', F, 'startprob', Wstart, 'transprob', Wtrans);
|
wolffd@0
|
82 bnet.CPD{eclass(L,2)} = hhmmQ_CPD(bnet, L+ss, 'Fself', F, 'Qps', W+ss, 'startprob', Lstart, 'transprob', Ltrans);
|
wolffd@0
|
83
|
wolffd@0
|
84
|
wolffd@0
|
85 if 0
|
wolffd@0
|
86 % To test it is generating correctly, we create an artificial
|
wolffd@0
|
87 % observation process that capitalizes at the start of a new segment
|
wolffd@0
|
88 % Oprob(Ft-1,Qt,Dt,Yt)
|
wolffd@0
|
89 Oprob = zeros(2,nwords,D,alphasize);
|
wolffd@0
|
90 Oprob(1,1,3,letter2num('t'),1)=1;
|
wolffd@0
|
91 Oprob(1,1,2,letter2num('h'),1)=1;
|
wolffd@0
|
92 Oprob(1,1,1,letter2num('e'),1)=1;
|
wolffd@0
|
93 Oprob(2,1,3,letter2num('T'),1)=1;
|
wolffd@0
|
94 Oprob(2,1,2,letter2num('H'),1)=1;
|
wolffd@0
|
95 Oprob(2,1,1,letter2num('E'),1)=1;
|
wolffd@0
|
96 Oprob(1,2,1,letter2num('a'),1)=1;
|
wolffd@0
|
97 Oprob(2,2,1,letter2num('A'),1)=1;
|
wolffd@0
|
98 Oprob(1,3,1,letter2num('b'),1)=1;
|
wolffd@0
|
99 Oprob(2,3,1,letter2num('B'),1)=1;
|
wolffd@0
|
100 Oprob(1,4,1,letter2num('c'),1)=1;
|
wolffd@0
|
101 Oprob(2,4,1,letter2num('C'),1)=1;
|
wolffd@0
|
102
|
wolffd@0
|
103 % Oprob1(Qt,Dt,Yt)
|
wolffd@0
|
104 Oprob1 = zeros(nwords,D,alphasize);
|
wolffd@0
|
105 Oprob1(1,3,letter2num('t'),1)=1;
|
wolffd@0
|
106 Oprob1(1,2,letter2num('h'),1)=1;
|
wolffd@0
|
107 Oprob1(1,1,letter2num('e'),1)=1;
|
wolffd@0
|
108 Oprob1(2,1,letter2num('a'),1)=1;
|
wolffd@0
|
109 Oprob1(3,1,letter2num('b'),1)=1;
|
wolffd@0
|
110 Oprob1(4,1,letter2num('c'),1)=1;
|
wolffd@0
|
111
|
wolffd@0
|
112 bnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', Oprob);
|
wolffd@0
|
113 bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', Oprob1);
|
wolffd@0
|
114
|
wolffd@0
|
115 evidence = cell(ss,T);
|
wolffd@0
|
116 %evidence{W,1}=1;
|
wolffd@0
|
117 sample = cell2num(sample_dbn(bnet, 'length', T, 'evidence', evidence));
|
wolffd@0
|
118 str = num2letter(sample(4,:))
|
wolffd@0
|
119 end
|
wolffd@0
|
120
|
wolffd@0
|
121
|
wolffd@0
|
122 if 1
|
wolffd@0
|
123
|
wolffd@0
|
124 [log_obslik, obslik, match] = mk_mgram_obslik(lower(data), words, word_len, word_prob);
|
wolffd@0
|
125 % obslik(j,t,d)
|
wolffd@0
|
126 softCPDpot = cell(ss,T);
|
wolffd@0
|
127 ens = ns;
|
wolffd@0
|
128 ens(O)=1;
|
wolffd@0
|
129 ens2 = [ens ens];
|
wolffd@0
|
130 for t=2:T
|
wolffd@0
|
131 dom = [F W+ss L+ss O+ss];
|
wolffd@0
|
132 % tab(Ft-1, Q2, Dt)
|
wolffd@0
|
133 tab = ones(2, nwords, D);
|
wolffd@0
|
134 if past
|
wolffd@0
|
135 tab(1,:,:)=1; % if haven't finished previous word, likelihood is 1
|
wolffd@0
|
136 %tab(2,:,:) = squeeze(obslik(:,t,:)); % otherwise likelihood of this segment
|
wolffd@0
|
137 for d=1:min(t,D)
|
wolffd@0
|
138 tab(2,:,d) = squeeze(obslik(:,t,d));
|
wolffd@0
|
139 end
|
wolffd@0
|
140 else
|
wolffd@0
|
141 for d=1:max(1,min(D,T+1-t))
|
wolffd@0
|
142 tab(2,:,d) = squeeze(obslik(:,t+d-1,d));
|
wolffd@0
|
143 end
|
wolffd@0
|
144 end
|
wolffd@0
|
145 softCPDpot{O,t} = dpot(dom, ens2(dom), tab);
|
wolffd@0
|
146 end
|
wolffd@0
|
147 t = 1;
|
wolffd@0
|
148 dom = [W L O];
|
wolffd@0
|
149 % tab(Q2, Dt)
|
wolffd@0
|
150 tab = ones(nwords, D);
|
wolffd@0
|
151 if past
|
wolffd@0
|
152 %tab = squeeze(obslik(:,t,:));
|
wolffd@0
|
153 tab(:,1) = squeeze(obslik(:,t,1));
|
wolffd@0
|
154 else
|
wolffd@0
|
155 for d=1:min(D,T-t)
|
wolffd@0
|
156 tab(:,d) = squeeze(obslik(:,t+d-1,d));
|
wolffd@0
|
157 end
|
wolffd@0
|
158 end
|
wolffd@0
|
159 softCPDpot{O,t} = dpot(dom, ens(dom), tab);
|
wolffd@0
|
160
|
wolffd@0
|
161
|
wolffd@0
|
162 %bnet.observed = [];
|
wolffd@0
|
163 % uniformative observations
|
wolffd@0
|
164 %bnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', mk_stochastic(ones(2,nwords,D,alphasize)));
|
wolffd@0
|
165 %bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', mk_stochastic(ones(nwords,D,alphasize)));
|
wolffd@0
|
166
|
wolffd@0
|
167 engine = jtree_dbn_inf_engine(bnet);
|
wolffd@0
|
168 evidence = cell(ss,T);
|
wolffd@0
|
169 % we add dummy data to O to force its effective size to be 1.
|
wolffd@0
|
170 % The actual values have already been incorporated into softCPDpot
|
wolffd@0
|
171 evidence(O,:) = num2cell(ones(1,T));
|
wolffd@0
|
172 [engine, ll_dbn] = enter_evidence(engine, evidence, 'softCPDpot', softCPDpot);
|
wolffd@0
|
173
|
wolffd@0
|
174
|
wolffd@0
|
175 %evidence(F,:) = num2cell(2*ones(1,T));
|
wolffd@0
|
176 %[engine, ll_dbn] = enter_evidence(engine, evidence);
|
wolffd@0
|
177
|
wolffd@0
|
178
|
wolffd@0
|
179 gamma = zeros(nwords, T);
|
wolffd@0
|
180 for t=1:T
|
wolffd@0
|
181 m = marginal_nodes(engine, [W F], t);
|
wolffd@0
|
182 gamma(:,t) = m.T(:,2);
|
wolffd@0
|
183 end
|
wolffd@0
|
184
|
wolffd@0
|
185 gamma
|
wolffd@0
|
186
|
wolffd@0
|
187 xidbn = zeros(nwords, nwords);
|
wolffd@0
|
188 for t=1:T-1
|
wolffd@0
|
189 m = marginal_nodes(engine, [W F W+ss], t);
|
wolffd@0
|
190 xidbn = xidbn + squeeze(m.T(:,2,:));
|
wolffd@0
|
191 end
|
wolffd@0
|
192
|
wolffd@0
|
193 % thee
|
wolffd@0
|
194 % xidbn(1,4) = 0.9412 the->e
|
wolffd@0
|
195 % (2,3)=0.0588 t->h
|
wolffd@0
|
196 % (3,4)=0.0588 h-e
|
wolffd@0
|
197 % (4,4)=0.0588 e-e
|
wolffd@0
|
198
|
wolffd@0
|
199
|
wolffd@0
|
200 end
|