annotate toolboxes/FullBNT-1.0.7/bnt/CPDs/@softmax_CPD/set_fields.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function CPD = set_params(CPD, varargin)
wolffd@0 2 % SET_PARAMS Set the parameters (fields) for a softmax_CPD object
wolffd@0 3 % CPD = set_params(CPD, name/value pairs)
wolffd@0 4 %
wolffd@0 5 % The following optional arguments can be specified in the form of name/value pairs:
wolffd@0 6 % (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y), Q1=ns(dps(1)), Q2=ns(dps(2)), ...
wolffd@0 7 % where dps are the discrete parents; if there are no discrete parents, we set Q1=1.)
wolffd@0 8 %
wolffd@0 9 % weights - (W(:,j,a,b,...) - W(:,j',a,b,...)) is ppn to dec. boundary
wolffd@0 10 % between j,j' given Q1=a,Q2=b,... [ randn(X,Y,Q1,Q2,...) ]
wolffd@0 11 % offset - (offset(j,a,b,...) - offset(j',a,b,...)) is the offset to dec. boundary
wolffd@0 12 % between j,j' given Q1=a,Q2=b,... [ randn(Y,Q1,Q2,...) ]
wolffd@0 13 % clamped - 'yes' means don't adjust params during learning ['no']
wolffd@0 14 % max_iter - the maximum number of steps to take [10]
wolffd@0 15 % verbose - 'yes' means print the LL at each step of IRLS ['no']
wolffd@0 16 % wthresh - convergence threshold for weights [1e-2]
wolffd@0 17 % llthresh - convergence threshold for log likelihood [1e-2]
wolffd@0 18 % approx_hess - 'yes' means approximate the Hessian for speed ['no']
wolffd@0 19 %
wolffd@0 20 % e.g., CPD = set_params(CPD,'offset', zeros(ns(i),1));
wolffd@0 21
wolffd@0 22 args = varargin;
wolffd@0 23 nargs = length(args);
wolffd@0 24 glimsz = prod(CPD.sizes(CPD.dpndx));
wolffd@0 25 for i=1:2:nargs
wolffd@0 26 switch args{i},
wolffd@0 27 case 'discrete', str='nothing to do';
wolffd@0 28 case 'clamped', CPD = set_clamped(CPD, strcmp(args{i+1}, 'yes'));
wolffd@0 29 case 'max_iter', CPD.max_iter = args{i+1};
wolffd@0 30 case 'verbose', CPD.verbose = strcmp(args{i+1}, 'yes');
wolffd@0 31 case 'max_iter', CPD.max_iter = args{i+1};
wolffd@0 32 case 'wthresh', CPD.wthresh = args{i+1};
wolffd@0 33 case 'llthresh', CPD.llthresh = args{i+1};
wolffd@0 34 case 'approx_hess', CPD.approx_hess = strcmp(args{i+1}, 'yes');
wolffd@0 35 case 'weights', for q=1:glimsz, CPD.glim{q}.w1 = args{i+1}(:,:,q); end;
wolffd@0 36 case 'offset',
wolffd@0 37 if glimsz == 1
wolffd@0 38 CPD.glim{1}.b1 = args{i+1};
wolffd@0 39 else
wolffd@0 40 for q=1:glimsz, CPD.glim{q}.b1 = args{i+1}(:,q); end;
wolffd@0 41 end
wolffd@0 42 otherwise,
wolffd@0 43 error(['invalid argument name ' args{i}]);
wolffd@0 44 end
wolffd@0 45 end