wolffd@0
|
1 function CPD = set_params(CPD, varargin)
|
wolffd@0
|
2 % SET_PARAMS Set the parameters (fields) for a softmax_CPD object
|
wolffd@0
|
3 % CPD = set_params(CPD, name/value pairs)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % The following optional arguments can be specified in the form of name/value pairs:
|
wolffd@0
|
6 % (Let ns(i) be the size of node i, X = ns(X), Y = ns(Y), Q1=ns(dps(1)), Q2=ns(dps(2)), ...
|
wolffd@0
|
7 % where dps are the discrete parents; if there are no discrete parents, we set Q1=1.)
|
wolffd@0
|
8 %
|
wolffd@0
|
9 % weights - (W(:,j,a,b,...) - W(:,j',a,b,...)) is ppn to dec. boundary
|
wolffd@0
|
10 % between j,j' given Q1=a,Q2=b,... [ randn(X,Y,Q1,Q2,...) ]
|
wolffd@0
|
11 % offset - (offset(j,a,b,...) - offset(j',a,b,...)) is the offset to dec. boundary
|
wolffd@0
|
12 % between j,j' given Q1=a,Q2=b,... [ randn(Y,Q1,Q2,...) ]
|
wolffd@0
|
13 % clamped - 'yes' means don't adjust params during learning ['no']
|
wolffd@0
|
14 % max_iter - the maximum number of steps to take [10]
|
wolffd@0
|
15 % verbose - 'yes' means print the LL at each step of IRLS ['no']
|
wolffd@0
|
16 % wthresh - convergence threshold for weights [1e-2]
|
wolffd@0
|
17 % llthresh - convergence threshold for log likelihood [1e-2]
|
wolffd@0
|
18 % approx_hess - 'yes' means approximate the Hessian for speed ['no']
|
wolffd@0
|
19 %
|
wolffd@0
|
20 % e.g., CPD = set_params(CPD,'offset', zeros(ns(i),1));
|
wolffd@0
|
21
|
wolffd@0
|
22 args = varargin;
|
wolffd@0
|
23 nargs = length(args);
|
wolffd@0
|
24 glimsz = prod(CPD.sizes(CPD.dpndx));
|
wolffd@0
|
25 for i=1:2:nargs
|
wolffd@0
|
26 switch args{i},
|
wolffd@0
|
27 case 'discrete', str='nothing to do';
|
wolffd@0
|
28 case 'clamped', CPD = set_clamped(CPD, strcmp(args{i+1}, 'yes'));
|
wolffd@0
|
29 case 'max_iter', CPD.max_iter = args{i+1};
|
wolffd@0
|
30 case 'verbose', CPD.verbose = strcmp(args{i+1}, 'yes');
|
wolffd@0
|
31 case 'max_iter', CPD.max_iter = args{i+1};
|
wolffd@0
|
32 case 'wthresh', CPD.wthresh = args{i+1};
|
wolffd@0
|
33 case 'llthresh', CPD.llthresh = args{i+1};
|
wolffd@0
|
34 case 'approx_hess', CPD.approx_hess = strcmp(args{i+1}, 'yes');
|
wolffd@0
|
35 case 'weights', for q=1:glimsz, CPD.glim{q}.w1 = args{i+1}(:,:,q); end;
|
wolffd@0
|
36 case 'offset',
|
wolffd@0
|
37 if glimsz == 1
|
wolffd@0
|
38 CPD.glim{1}.b1 = args{i+1};
|
wolffd@0
|
39 else
|
wolffd@0
|
40 for q=1:glimsz, CPD.glim{q}.b1 = args{i+1}(:,q); end;
|
wolffd@0
|
41 end
|
wolffd@0
|
42 otherwise,
|
wolffd@0
|
43 error(['invalid argument name ' args{i}]);
|
wolffd@0
|
44 end
|
wolffd@0
|
45 end
|