wolffd@0
|
1 function CPD = hhmmQ_CPD(bnet, self, varargin)
|
wolffd@0
|
2 % HHMMQ_CPD Make the CPD for a Q node in a hierarchical HMM
|
wolffd@0
|
3 % CPD = hhmmQ_CPD(bnet, self, ...)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % Fself(t-1) Qps(t)
|
wolffd@0
|
6 % \ |
|
wolffd@0
|
7 % \ v
|
wolffd@0
|
8 % Qold(t-1) -> Q(t)
|
wolffd@0
|
9 % /
|
wolffd@0
|
10 % /
|
wolffd@0
|
11 % Fbelow(t-1)
|
wolffd@0
|
12 %
|
wolffd@0
|
13 % Let ss = slice size = num. nodes per slice.
|
wolffd@0
|
14 % This node is Q(t), and has mandatory parents Qold(t-1) (assumed to be numbered Q(t)-ss)
|
wolffd@0
|
15 % and optional parents Fbelow, Fself, Qps.
|
wolffd@0
|
16 % We require parents to be ordered (numbered) as follows:
|
wolffd@0
|
17 % Qold, Fbelow, Fself, Qps, Q.
|
wolffd@0
|
18 %
|
wolffd@0
|
19 % If Fself=2, we use the transition matrix, else we use the prior matrix.
|
wolffd@0
|
20 % If Fself node is omitted (eg. top level), we always use the transition matrix.
|
wolffd@0
|
21 % If Fbelow=2, we may change state, otherwise we must stay in the same state.
|
wolffd@0
|
22 % If Fbelow node is omitted (eg., bottom level), we may change state at every step.
|
wolffd@0
|
23 % If Qps (Q parents) are specified, all parameters are conditioned on their joint value.
|
wolffd@0
|
24 % We may choose any subset of nodes to condition on, as long as they as numbered lower than self.
|
wolffd@0
|
25 %
|
wolffd@0
|
26 % optional args [defaults]
|
wolffd@0
|
27 %
|
wolffd@0
|
28 % Fself - node number <= ss
|
wolffd@0
|
29 % Fbelow - node number <= ss
|
wolffd@0
|
30 % Qps - node numbers (all <= 2*ss) - uses 2TBN indexing
|
wolffd@0
|
31 % transprob - transprob(i,k,j) = prob transition from i to j given Qps = k ['leftright']
|
wolffd@0
|
32 % selfprob - prob of a transition from i to i given Qps=k [0.1]
|
wolffd@0
|
33 % startprob - startprob(k,j) = prob start in j given Qps = k ['leftstart']
|
wolffd@0
|
34 % startargs - other args to be passed to the sub tabular_CPD for learning startprob
|
wolffd@0
|
35 % transargs - other args will be passed to the sub tabular_CPD for learning transprob
|
wolffd@0
|
36 % fullstartprob - 1 means startprob depends on Q(t-1) [0]
|
wolffd@0
|
37 % hhmmQ_CPD is a subclass of tabular_CPD so we inherit inference methods like CPD_to_pot, etc.
|
wolffd@0
|
38 %
|
wolffd@0
|
39 % We create isolated tabular_CPDs with no F parents to learn transprob/startprob
|
wolffd@0
|
40 % so we can avail of e.g., entropic or Dirichlet priors.
|
wolffd@0
|
41 % In the future, we will be able to represent the transprob using a tree_CPD.
|
wolffd@0
|
42 %
|
wolffd@0
|
43 % For details, see "Linear-time inference in hierarchical HMMs", Murphy and Paskin, NIPS'01.
|
wolffd@0
|
44
|
wolffd@0
|
45
|
wolffd@0
|
46 ss = bnet.nnodes_per_slice;
|
wolffd@0
|
47 ns = bnet.node_sizes(:);
|
wolffd@0
|
48
|
wolffd@0
|
49 % set default arguments
|
wolffd@0
|
50 Fself = [];
|
wolffd@0
|
51 Fbelow = [];
|
wolffd@0
|
52 Qps = [];
|
wolffd@0
|
53 startprob = 'leftstart';
|
wolffd@0
|
54 transprob = 'leftright';
|
wolffd@0
|
55 startargs = {};
|
wolffd@0
|
56 transargs = {};
|
wolffd@0
|
57 selfprob = 0.1;
|
wolffd@0
|
58 fullstartprob = 0;
|
wolffd@0
|
59
|
wolffd@0
|
60 for i=1:2:length(varargin)
|
wolffd@0
|
61 switch varargin{i},
|
wolffd@0
|
62 case 'Fself', Fself = varargin{i+1};
|
wolffd@0
|
63 case 'Fbelow', Fbelow = varargin{i+1};
|
wolffd@0
|
64 case 'Qps', Qps = varargin{i+1};
|
wolffd@0
|
65 case 'transprob', transprob = varargin{i+1};
|
wolffd@0
|
66 case 'selfprob', selfprob = varargin{i+1};
|
wolffd@0
|
67 case 'startprob', startprob = varargin{i+1};
|
wolffd@0
|
68 case 'startargs', startargs = varargin{i+1};
|
wolffd@0
|
69 case 'transargs', transargs = varargin{i+1};
|
wolffd@0
|
70 case 'fullstartprob', fullstartprob = varargin{i+1};
|
wolffd@0
|
71 end
|
wolffd@0
|
72 end
|
wolffd@0
|
73
|
wolffd@0
|
74 CPD.fullstartprob = fullstartprob;
|
wolffd@0
|
75
|
wolffd@0
|
76 ps = parents(bnet.dag, self);
|
wolffd@0
|
77 ndsz = ns(:)';
|
wolffd@0
|
78 CPD.dom_sz = [ndsz(ps) ns(self)];
|
wolffd@0
|
79 CPD.Fself_ndx = find_equiv_posns(Fself, ps);
|
wolffd@0
|
80 CPD.Fbelow_ndx = find_equiv_posns(Fbelow, ps);
|
wolffd@0
|
81 %CPD.Qps_ndx = find_equiv_posns(Qps+ss, ps);
|
wolffd@0
|
82 CPD.Qps_ndx = find_equiv_posns(Qps, ps);
|
wolffd@0
|
83 old_self = self-ss;
|
wolffd@0
|
84 CPD.old_self_ndx = find_equiv_posns(old_self, ps);
|
wolffd@0
|
85
|
wolffd@0
|
86 Qps = ps(CPD.Qps_ndx);
|
wolffd@0
|
87 CPD.Qsz = ns(self);
|
wolffd@0
|
88 CPD.Qpsz = prod(ns(Qps));
|
wolffd@0
|
89 CPD.Qpsizes = ns(Qps);
|
wolffd@0
|
90 Qsz = CPD.Qsz;
|
wolffd@0
|
91 Qpsz = CPD.Qpsz;
|
wolffd@0
|
92
|
wolffd@0
|
93 if strcmp(transprob, 'leftright')
|
wolffd@0
|
94 LR = mk_leftright_transmat(Qsz, selfprob);
|
wolffd@0
|
95 transprob = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j)
|
wolffd@0
|
96 transprob = permute(transprob, [2 1 3]); % now transprob(i,k,j)
|
wolffd@0
|
97 end
|
wolffd@0
|
98 transargs{end+1} = 'CPT';
|
wolffd@0
|
99 transargs{end+1} = transprob;
|
wolffd@0
|
100 CPD.sub_CPD_trans = mk_isolated_tabular_CPD(ns([old_self Qps self]), transargs);
|
wolffd@0
|
101 S = struct(CPD.sub_CPD_trans);
|
wolffd@0
|
102 %CPD.transprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);
|
wolffd@0
|
103 CPD.transprob = S.CPT;
|
wolffd@0
|
104
|
wolffd@0
|
105
|
wolffd@0
|
106 if strcmp(startprob, 'leftstart')
|
wolffd@0
|
107 startprob = zeros(Qpsz, Qsz);
|
wolffd@0
|
108 startprob(:,1) = 1;
|
wolffd@0
|
109 end
|
wolffd@0
|
110 if isempty(CPD.Fself_ndx)
|
wolffd@0
|
111 CPD.sub_CPD_start = [];
|
wolffd@0
|
112 CPD.startprob = [];
|
wolffd@0
|
113 else
|
wolffd@0
|
114 startargs{end+1} = 'CPT';
|
wolffd@0
|
115 startargs{end+1} = startprob;
|
wolffd@0
|
116 if CPD.fullstartprob
|
wolffd@0
|
117 CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([self Qps self]), startargs);
|
wolffd@0
|
118 S = struct(CPD.sub_CPD_start);
|
wolffd@0
|
119 %CPD.startprob = myreshape(S.CPT, [Qsz Qpsz Qsz]);
|
wolffd@0
|
120 CPD.startprob = S.CPT;
|
wolffd@0
|
121 else
|
wolffd@0
|
122 CPD.sub_CPD_start = mk_isolated_tabular_CPD(ns([Qps self]), startargs);
|
wolffd@0
|
123 S = struct(CPD.sub_CPD_start);
|
wolffd@0
|
124 %CPD.startprob = myreshape(S.CPT, [CPD.Qpsizes Qsz]);
|
wolffd@0
|
125 CPD.startprob = S.CPT;
|
wolffd@0
|
126 end
|
wolffd@0
|
127 end
|
wolffd@0
|
128
|
wolffd@0
|
129 CPD = class(CPD, 'hhmmQ_CPD', tabular_CPD(bnet, self));
|
wolffd@0
|
130
|
wolffd@0
|
131 CPD = update_CPT(CPD);
|
wolffd@0
|
132
|