annotate toolboxes/FullBNT-1.0.7/Kalman/learn_AR_diagonal.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [coef, C] = learn_AR_diagonal(y, k)
wolffd@0 2 % Find the ML parameters for a collection of independent scalar AR processes.
wolffd@0 3
wolffd@0 4 % sep_coef(1,1,t,i) is the coefficient to apply to compopnent i of the state vector t steps ago
wolffd@0 5 % eg. consider two components L and R and let A = coef(:,:,1,:), B = coef(:,:,2,:)
wolffd@0 6 % L3 (AL 0 BL 0) (L2) (CL 0 0 0)
wolffd@0 7 % R3 = (0 AR 0 BR) (R2) (0 CR 0 0)
wolffd@0 8 % L2 (1 0 0 0 ) (L1) + (0 0 0 0)
wolffd@0 9 % R2 (0 1 0 0 ) (R1) (0 0 0 0)
wolffd@0 10
wolffd@0 11 ss = size(y, 1);
wolffd@0 12 sep_coef = zeros(1,1,k,ss);
wolffd@0 13 for i=1:ss
wolffd@0 14 [sep_coef(:,:,:,i), sep_cov(i)] = learn_AR(k, y(i,:));
wolffd@0 15 end
wolffd@0 16 C = diag(sep_cov);
wolffd@0 17 for t=1:k
wolffd@0 18 x = sep_coef(1,1,t,:);
wolffd@0 19 coef(:,:,t) = diag(x(:));
wolffd@0 20 end