annotate toolboxes/FullBNT-1.0.7/KPMtools/plotcov3.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % PLOTCOV3 - Plots a covariance ellipsoid with axes for a trivariate
wolffd@0 2 % Gaussian distribution.
wolffd@0 3 %
wolffd@0 4 % Usage:
wolffd@0 5 % [h, s] = plotcov3(mu, Sigma[, OPTIONS]);
wolffd@0 6 %
wolffd@0 7 % Inputs:
wolffd@0 8 % mu - a 3 x 1 vector giving the mean of the distribution.
wolffd@0 9 % Sigma - a 3 x 3 symmetric positive semi-definite matrix giving
wolffd@0 10 % the covariance of the distribution (or the zero matrix).
wolffd@0 11 %
wolffd@0 12 % Options:
wolffd@0 13 % 'conf' - a scalar between 0 and 1 giving the confidence
wolffd@0 14 % interval (i.e., the fraction of probability mass to
wolffd@0 15 % be enclosed by the ellipse); default is 0.9.
wolffd@0 16 % 'num-pts' - if the value supplied is n, then (n + 1)^2 points
wolffd@0 17 % to be used to plot the ellipse; default is 20.
wolffd@0 18 % 'plot-opts' - a cell vector of arguments to be handed to PLOT3
wolffd@0 19 % to contol the appearance of the axes, e.g.,
wolffd@0 20 % {'Color', 'g', 'LineWidth', 1}; the default is {}
wolffd@0 21 % 'surf-opts' - a cell vector of arguments to be handed to SURF
wolffd@0 22 % to contol the appearance of the ellipsoid
wolffd@0 23 % surface; a nice possibility that yields
wolffd@0 24 % transparency is: {'EdgeAlpha', 0, 'FaceAlpha',
wolffd@0 25 % 0.1, 'FaceColor', 'g'}; the default is {}
wolffd@0 26 %
wolffd@0 27 % Outputs:
wolffd@0 28 % h - a vector of handles on the axis lines
wolffd@0 29 % s - a handle on the ellipsoid surface object
wolffd@0 30 %
wolffd@0 31 % See also: PLOTCOV2
wolffd@0 32
wolffd@0 33 % Copyright (C) 2002 Mark A. Paskin
wolffd@0 34 %
wolffd@0 35 % This program is free software; you can redistribute it and/or modify
wolffd@0 36 % it under the terms of the GNU General Public License as published by
wolffd@0 37 % the Free Software Foundation; either version 2 of the License, or
wolffd@0 38 % (at your option) any later version.
wolffd@0 39 %
wolffd@0 40 % This program is distributed in the hope that it will be useful, but
wolffd@0 41 % WITHOUT ANY WARRANTY; without even the implied warranty of
wolffd@0 42 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
wolffd@0 43 % General Public License for more details.
wolffd@0 44 %
wolffd@0 45 % You should have received a copy of the GNU General Public License
wolffd@0 46 % along with this program; if not, write to the Free Software
wolffd@0 47 % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
wolffd@0 48 % USA.
wolffd@0 49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 50
wolffd@0 51 function [h, s] = plotcov3(mu, Sigma, varargin)
wolffd@0 52
wolffd@0 53 if size(Sigma) ~= [3 3], error('Sigma must be a 3 by 3 matrix'); end
wolffd@0 54 if length(mu) ~= 3, error('mu must be a 3 by 1 vector'); end
wolffd@0 55
wolffd@0 56 [p, ...
wolffd@0 57 n, ...
wolffd@0 58 plot_opts, ...
wolffd@0 59 surf_opts] = process_options(varargin, 'conf', 0.9, ...
wolffd@0 60 'num-pts', 20, ...
wolffd@0 61 'plot-opts', {}, ...
wolffd@0 62 'surf-opts', {});
wolffd@0 63 h = [];
wolffd@0 64 holding = ishold;
wolffd@0 65 if (Sigma == zeros(3, 3))
wolffd@0 66 z = mu;
wolffd@0 67 else
wolffd@0 68 % Compute the Mahalanobis radius of the ellipsoid that encloses
wolffd@0 69 % the desired probability mass.
wolffd@0 70 k = conf2mahal(p, 3);
wolffd@0 71 % The axes of the covariance ellipse are given by the eigenvectors of
wolffd@0 72 % the covariance matrix. Their lengths (for the ellipse with unit
wolffd@0 73 % Mahalanobis radius) are given by the square roots of the
wolffd@0 74 % corresponding eigenvalues.
wolffd@0 75 if (issparse(Sigma))
wolffd@0 76 [V, D] = eigs(Sigma);
wolffd@0 77 else
wolffd@0 78 [V, D] = eig(Sigma);
wolffd@0 79 end
wolffd@0 80 if (any(diag(D) < 0))
wolffd@0 81 error('Invalid covariance matrix: not positive semi-definite.');
wolffd@0 82 end
wolffd@0 83 % Compute the points on the surface of the ellipsoid.
wolffd@0 84 t = linspace(0, 2*pi, n);
wolffd@0 85 [X, Y, Z] = sphere(n);
wolffd@0 86 u = [X(:)'; Y(:)'; Z(:)'];
wolffd@0 87 w = (k * V * sqrt(D)) * u;
wolffd@0 88 z = repmat(mu(:), [1 (n + 1)^2]) + w;
wolffd@0 89
wolffd@0 90 % Plot the axes.
wolffd@0 91 L = k * sqrt(diag(D));
wolffd@0 92 h = plot3([mu(1); mu(1) + L(1) * V(1, 1)], ...
wolffd@0 93 [mu(2); mu(2) + L(1) * V(2, 1)], ...
wolffd@0 94 [mu(3); mu(3) + L(1) * V(3, 1)], plot_opts{:});
wolffd@0 95 hold on;
wolffd@0 96 h = [h; plot3([mu(1); mu(1) + L(2) * V(1, 2)], ...
wolffd@0 97 [mu(2); mu(2) + L(2) * V(2, 2)], ...
wolffd@0 98 [mu(3); mu(3) + L(2) * V(3, 2)], plot_opts{:})];
wolffd@0 99 h = [h; plot3([mu(1); mu(1) + L(3) * V(1, 3)], ...
wolffd@0 100 [mu(2); mu(2) + L(3) * V(2, 3)], ...
wolffd@0 101 [mu(3); mu(3) + L(3) * V(3, 3)], plot_opts{:})];
wolffd@0 102 end
wolffd@0 103
wolffd@0 104 s = surf(reshape(z(1, :), [(n + 1) (n + 1)]), ...
wolffd@0 105 reshape(z(2, :), [(n + 1) (n + 1)]), ...
wolffd@0 106 reshape(z(3, :), [(n + 1) (n + 1)]), ...
wolffd@0 107 surf_opts{:});
wolffd@0 108
wolffd@0 109 if (~holding) hold off; end