annotate toolboxes/FullBNT-1.0.7/KPMtools/plotcov2New.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 % PLOTCOV2 - Plots a covariance ellipsoid with axes for a bivariate
wolffd@0 2 % Gaussian distribution.
wolffd@0 3 %
wolffd@0 4 % Usage:
wolffd@0 5 % [h, s] = plotcov2(mu, Sigma[, OPTIONS]);
wolffd@0 6 %
wolffd@0 7 % Inputs:
wolffd@0 8 % mu - a 2 x 1 vector giving the mean of the distribution.
wolffd@0 9 % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving
wolffd@0 10 % the covariance of the distribution (or the zero matrix).
wolffd@0 11 %
wolffd@0 12 % Options:
wolffd@0 13 % 'conf' - a scalar between 0 and 1 giving the confidence
wolffd@0 14 % interval (i.e., the fraction of probability mass to
wolffd@0 15 % be enclosed by the ellipse); default is 0.9.
wolffd@0 16 % 'num-pts' - if the value supplied is n, then (n + 1)^2 points
wolffd@0 17 % to be used to plot the ellipse; default is 20.
wolffd@0 18 % 'label' - if non-empty, a string that will label the
wolffd@0 19 % ellipsoid (default: [])
wolffd@0 20 % 'plot-axes' - a 0/1 flag indicating if the ellipsoid's axes
wolffd@0 21 % should be plotted (default: 1)
wolffd@0 22 % 'plot-opts' - a cell vector of arguments to be handed to PLOT3
wolffd@0 23 % to contol the appearance of the axes, e.g.,
wolffd@0 24 % {'Color', 'g', 'LineWidth', 1}; the default is {}
wolffd@0 25 % 'fill-color' - a color specifier; is this is not [], the
wolffd@0 26 % covariance ellipse is filled with this color
wolffd@0 27 % (default: [])
wolffd@0 28 %
wolffd@0 29 % Outputs:
wolffd@0 30 % h - a vector of handles on the axis lines
wolffd@0 31 %
wolffd@0 32 % See also: PLOTCOV3
wolffd@0 33
wolffd@0 34 % Copyright (C) 2002 Mark A. Paskin
wolffd@0 35 %
wolffd@0 36 % This program is free software; you can redistribute it and/or modify
wolffd@0 37 % it under the terms of the GNU General Public License as published by
wolffd@0 38 % the Free Software Foundation; either version 2 of the License, or
wolffd@0 39 % (at your option) any later version.
wolffd@0 40 %
wolffd@0 41 % This program is distributed in the hope that it will be useful, but
wolffd@0 42 % WITHOUT ANY WARRANTY; without even the implied warranty of
wolffd@0 43 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
wolffd@0 44 % General Public License for more details.
wolffd@0 45 %
wolffd@0 46 % You should have received a copy of the GNU General Public License
wolffd@0 47 % along with this program; if not, write to the Free Software
wolffd@0 48 % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
wolffd@0 49 % USA.
wolffd@0 50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 51
wolffd@0 52 function [h, s] = plotcov2New(mu, Sigma, varargin)
wolffd@0 53
wolffd@0 54 h = [];
wolffd@0 55 s = [];
wolffd@0 56
wolffd@0 57 if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end
wolffd@0 58 if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end
wolffd@0 59
wolffd@0 60 Sigma = checkpsd(Sigma);
wolffd@0 61
wolffd@0 62 [p, ...
wolffd@0 63 n, ...
wolffd@0 64 label, ...
wolffd@0 65 plot_axes, ...
wolffd@0 66 plot_opts, ...
wolffd@0 67 fill_color] = process_options(varargin, 'conf', 0.9, ...
wolffd@0 68 'num-pts', 20, ...
wolffd@0 69 'label', [], ...
wolffd@0 70 'plot-axes', 1, ...
wolffd@0 71 'plot-opts', {}, ...
wolffd@0 72 'fill-color', []);
wolffd@0 73 holding = ishold;
wolffd@0 74 % Compute the Mahalanobis radius of the ellipsoid that encloses
wolffd@0 75 % the desired probability mass.
wolffd@0 76 k = conf2mahal(p, 2);
wolffd@0 77 % Scale the covariance matrix so the confidence region has unit
wolffd@0 78 % Mahalanobis distance.
wolffd@0 79 Sigma = Sigma * k;
wolffd@0 80 % The axes of the covariance ellipse are given by the eigenvectors of
wolffd@0 81 % the covariance matrix. Their lengths (for the ellipse with unit
wolffd@0 82 % Mahalanobis radius) are given by the square roots of the
wolffd@0 83 % corresponding eigenvalues.
wolffd@0 84 [V, D] = eig(full(Sigma));
wolffd@0 85 V = real(V);
wolffd@0 86 D = real(D);
wolffd@0 87 D = abs(D);
wolffd@0 88
wolffd@0 89 % Compute the points on the boundary of the ellipsoid.
wolffd@0 90 t = linspace(0, 2*pi, n);
wolffd@0 91 u = [cos(t(:))'; sin(t(:))'];
wolffd@0 92 w = (V * sqrt(D)) * u;
wolffd@0 93 z = repmat(mu(:), [1 n]) + w;
wolffd@0 94 h = [h; plot(z(1, :), z(2, :), plot_opts{:})];
wolffd@0 95 if (~isempty(fill_color))
wolffd@0 96 s = patch(z(1, :), z(2, :), fill_color);
wolffd@0 97 end
wolffd@0 98
wolffd@0 99 % Plot the axes.
wolffd@0 100 if (plot_axes)
wolffd@0 101 hold on;
wolffd@0 102 L = sqrt(diag(D));
wolffd@0 103 h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ...
wolffd@0 104 [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:});
wolffd@0 105 h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ...
wolffd@0 106 [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})];
wolffd@0 107 end
wolffd@0 108
wolffd@0 109
wolffd@0 110 if (~isempty(label))
wolffd@0 111 th = text(mu(1), mu(2), label);
wolffd@0 112 set(th, 'FontSize', 18);
wolffd@0 113 set(th, 'FontName', 'Times');
wolffd@0 114 set(th, 'FontWeight', 'bold');
wolffd@0 115 set(th, 'FontAngle', 'italic');
wolffd@0 116 set(th, 'HorizontalAlignment', 'center');
wolffd@0 117 end
wolffd@0 118
wolffd@0 119 if (~holding & plot_axes) hold off; end