wolffd@0
|
1 % PLOTCOV2 - Plots a covariance ellipse with major and minor axes
|
wolffd@0
|
2 % for a bivariate Gaussian distribution.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Usage:
|
wolffd@0
|
5 % h = plotcov2(mu, Sigma[, OPTIONS]);
|
wolffd@0
|
6 %
|
wolffd@0
|
7 % Inputs:
|
wolffd@0
|
8 % mu - a 2 x 1 vector giving the mean of the distribution.
|
wolffd@0
|
9 % Sigma - a 2 x 2 symmetric positive semi-definite matrix giving
|
wolffd@0
|
10 % the covariance of the distribution (or the zero matrix).
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % Options:
|
wolffd@0
|
13 % 'conf' - a scalar between 0 and 1 giving the confidence
|
wolffd@0
|
14 % interval (i.e., the fraction of probability mass to
|
wolffd@0
|
15 % be enclosed by the ellipse); default is 0.9.
|
wolffd@0
|
16 % 'num-pts' - the number of points to be used to plot the
|
wolffd@0
|
17 % ellipse; default is 100.
|
wolffd@0
|
18 %
|
wolffd@0
|
19 % This function also accepts options for PLOT.
|
wolffd@0
|
20 %
|
wolffd@0
|
21 % Outputs:
|
wolffd@0
|
22 % h - a vector of figure handles to the ellipse boundary and
|
wolffd@0
|
23 % its major and minor axes
|
wolffd@0
|
24 %
|
wolffd@0
|
25 % See also: PLOTCOV3
|
wolffd@0
|
26
|
wolffd@0
|
27 % Copyright (C) 2002 Mark A. Paskin
|
wolffd@0
|
28 %
|
wolffd@0
|
29 % This program is free software; you can redistribute it and/or modify
|
wolffd@0
|
30 % it under the terms of the GNU General Public License as published by
|
wolffd@0
|
31 % the Free Software Foundation; either version 2 of the License, or
|
wolffd@0
|
32 % (at your option) any later version.
|
wolffd@0
|
33 %
|
wolffd@0
|
34 % This program is distributed in the hope that it will be useful, but
|
wolffd@0
|
35 % WITHOUT ANY WARRANTY; without even the implied warranty of
|
wolffd@0
|
36 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
wolffd@0
|
37 % General Public License for more details.
|
wolffd@0
|
38 %
|
wolffd@0
|
39 % You should have received a copy of the GNU General Public License
|
wolffd@0
|
40 % along with this program; if not, write to the Free Software
|
wolffd@0
|
41 % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
wolffd@0
|
42 % USA.
|
wolffd@0
|
43 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
44
|
wolffd@0
|
45 function h = plotcov2(mu, Sigma, varargin)
|
wolffd@0
|
46
|
wolffd@0
|
47 if size(Sigma) ~= [2 2], error('Sigma must be a 2 by 2 matrix'); end
|
wolffd@0
|
48 if length(mu) ~= 2, error('mu must be a 2 by 1 vector'); end
|
wolffd@0
|
49
|
wolffd@0
|
50 [p, ...
|
wolffd@0
|
51 n, ...
|
wolffd@0
|
52 plot_opts] = process_options(varargin, 'conf', 0.9, ...
|
wolffd@0
|
53 'num-pts', 100);
|
wolffd@0
|
54 h = [];
|
wolffd@0
|
55 holding = ishold;
|
wolffd@0
|
56 if (Sigma == zeros(2, 2))
|
wolffd@0
|
57 z = mu;
|
wolffd@0
|
58 else
|
wolffd@0
|
59 % Compute the Mahalanobis radius of the ellipsoid that encloses
|
wolffd@0
|
60 % the desired probability mass.
|
wolffd@0
|
61 k = conf2mahal(p, 2);
|
wolffd@0
|
62 % The major and minor axes of the covariance ellipse are given by
|
wolffd@0
|
63 % the eigenvectors of the covariance matrix. Their lengths (for
|
wolffd@0
|
64 % the ellipse with unit Mahalanobis radius) are given by the
|
wolffd@0
|
65 % square roots of the corresponding eigenvalues.
|
wolffd@0
|
66 if (issparse(Sigma))
|
wolffd@0
|
67 [V, D] = eigs(Sigma);
|
wolffd@0
|
68 else
|
wolffd@0
|
69 [V, D] = eig(Sigma);
|
wolffd@0
|
70 end
|
wolffd@0
|
71 % Compute the points on the surface of the ellipse.
|
wolffd@0
|
72 t = linspace(0, 2*pi, n);
|
wolffd@0
|
73 u = [cos(t); sin(t)];
|
wolffd@0
|
74 w = (k * V * sqrt(D)) * u;
|
wolffd@0
|
75 z = repmat(mu, [1 n]) + w;
|
wolffd@0
|
76 % Plot the major and minor axes.
|
wolffd@0
|
77 L = k * sqrt(diag(D));
|
wolffd@0
|
78 h = plot([mu(1); mu(1) + L(1) * V(1, 1)], ...
|
wolffd@0
|
79 [mu(2); mu(2) + L(1) * V(2, 1)], plot_opts{:});
|
wolffd@0
|
80 hold on;
|
wolffd@0
|
81 h = [h; plot([mu(1); mu(1) + L(2) * V(1, 2)], ...
|
wolffd@0
|
82 [mu(2); mu(2) + L(2) * V(2, 2)], plot_opts{:})];
|
wolffd@0
|
83 end
|
wolffd@0
|
84
|
wolffd@0
|
85 h = [h; plot(z(1, :), z(2, :), plot_opts{:})];
|
wolffd@0
|
86 if (~holding) hold off; end
|