Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/KPMstats/student_t_prob.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 function p = student_t_pdf(X, mu, lambda, alpha) |
wolffd@0 | 2 % STUDENT_T_PDF Evaluate the multivariate student-t distribution at a point |
wolffd@0 | 3 % p = student_t_pdf(X, mu, lambda, alpha) |
wolffd@0 | 4 % |
wolffd@0 | 5 % Each column of X is evaluated. |
wolffd@0 | 6 % See Bernardo and Smith p435. |
wolffd@0 | 7 |
wolffd@0 | 8 k = length(mu); |
wolffd@0 | 9 assert(size(X,1) == k); |
wolffd@0 | 10 [k N] = size(X); |
wolffd@0 | 11 numer = gamma(0.5*(alpha+k)); |
wolffd@0 | 12 denom = gamma(0.5*alpha) * (alpha*pi)^(k/2); |
wolffd@0 | 13 c = (numer/denom) * det(lambda)^(0.5); |
wolffd@0 | 14 p = c*(1 + (1/alpha)*(X-mu)'*lambda*(X-mu))^(-(alpha+k)/2); % scalar version |
wolffd@0 | 15 %m = repmat(mu(:), 1, N); |
wolffd@0 | 16 %exponent = sum((X-m)'*lambda*(X-m), 2); % column vector |
wolffd@0 | 17 %p = c*(1 + (1/alpha)*exponent).^(-(alpha+k)/2); |
wolffd@0 | 18 |
wolffd@0 | 19 keyboard |