Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/KPMstats/mc_stat_distrib.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 function pi = mc_stat_distrib(P) |
wolffd@0 | 2 % MC_STAT_DISTRIB Compute stationary distribution of a Markov chain |
wolffd@0 | 3 % function pi = mc_stat_distrib(P) |
wolffd@0 | 4 % |
wolffd@0 | 5 % Each row of P should sum to one; pi is a column vector |
wolffd@0 | 6 |
wolffd@0 | 7 % Kevin Murphy, 16 Feb 2003 |
wolffd@0 | 8 |
wolffd@0 | 9 % The stationary distribution pi satisfies pi P = pi |
wolffd@0 | 10 % subject to sum_i pi(i) = 1, 0 <= pi(i) <= 1 |
wolffd@0 | 11 % Hence |
wolffd@0 | 12 % (P' 0n (pi = (pi |
wolffd@0 | 13 % 1n 0) 1) 1) |
wolffd@0 | 14 % or P2 pi2 = pi2. |
wolffd@0 | 15 % Naively we can solve this using (P2 - I(n+1)) pi2 = 0(n+1) |
wolffd@0 | 16 % or P3 pi2 = 0(n+1), i.e., pi2 = P3 \ zeros(n+1,1) |
wolffd@0 | 17 % but this is singular (because of the sum-to-one constraint). |
wolffd@0 | 18 % Hence we replace the last row of P' with 1s instead of appending ones to create P2, |
wolffd@0 | 19 % and similarly for pi. |
wolffd@0 | 20 |
wolffd@0 | 21 n = length(P); |
wolffd@0 | 22 P4 = P'-eye(n); |
wolffd@0 | 23 P4(end,:) = 1; |
wolffd@0 | 24 pi = P4 \ [zeros(n-1,1);1]; |
wolffd@0 | 25 |
wolffd@0 | 26 |