wolffd@0
|
1 function [CI, r, p] = cond_indep_fisher_z(X, Y, S, C, N, alpha)
|
wolffd@0
|
2 % COND_INDEP_FISHER_Z Test if X indep Y given Z using Fisher's Z test
|
wolffd@0
|
3 % CI = cond_indep_fisher_z(X, Y, S, C, N, alpha)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % C is the covariance (or correlation) matrix
|
wolffd@0
|
6 % N is the sample size
|
wolffd@0
|
7 % alpha is the significance level (default: 0.05)
|
wolffd@0
|
8 %
|
wolffd@0
|
9 % See p133 of T. Anderson, "An Intro. to Multivariate Statistical Analysis", 1984
|
wolffd@0
|
10
|
wolffd@0
|
11 if nargin < 6, alpha = 0.05; end
|
wolffd@0
|
12
|
wolffd@0
|
13 r = partial_corr_coef(C, X, Y, S);
|
wolffd@0
|
14 z = 0.5*log( (1+r)/(1-r) );
|
wolffd@0
|
15 z0 = 0;
|
wolffd@0
|
16 W = sqrt(N - length(S) - 3)*(z-z0); % W ~ N(0,1)
|
wolffd@0
|
17 cutoff = norminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95
|
wolffd@0
|
18 %cutoff = mynorminv(1 - 0.5*alpha); % P(|W| <= cutoff) = 0.95
|
wolffd@0
|
19 if abs(W) < cutoff
|
wolffd@0
|
20 CI = 1;
|
wolffd@0
|
21 else % reject the null hypothesis that rho = 0
|
wolffd@0
|
22 CI = 0;
|
wolffd@0
|
23 end
|
wolffd@0
|
24 p = normcdf(W);
|
wolffd@0
|
25 %p = mynormcdf(W);
|
wolffd@0
|
26
|
wolffd@0
|
27 %%%%%%%%%
|
wolffd@0
|
28
|
wolffd@0
|
29 function p = normcdf(x,mu,sigma)
|
wolffd@0
|
30 %NORMCDF Normal cumulative distribution function (cdf).
|
wolffd@0
|
31 % P = NORMCDF(X,MU,SIGMA) computes the normal cdf with mean MU and
|
wolffd@0
|
32 % standard deviation SIGMA at the values in X.
|
wolffd@0
|
33 %
|
wolffd@0
|
34 % The size of P is the common size of X, MU and SIGMA. A scalar input
|
wolffd@0
|
35 % functions as a constant matrix of the same size as the other inputs.
|
wolffd@0
|
36 %
|
wolffd@0
|
37 % Default values for MU and SIGMA are 0 and 1 respectively.
|
wolffd@0
|
38
|
wolffd@0
|
39 % References:
|
wolffd@0
|
40 % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
|
wolffd@0
|
41 % Functions", Government Printing Office, 1964, 26.2.
|
wolffd@0
|
42
|
wolffd@0
|
43 % Copyright (c) 1993-98 by The MathWorks, Inc.
|
wolffd@0
|
44 % $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:29:18 $
|
wolffd@0
|
45
|
wolffd@0
|
46 if nargin < 3,
|
wolffd@0
|
47 sigma = 1;
|
wolffd@0
|
48 end
|
wolffd@0
|
49
|
wolffd@0
|
50 if nargin < 2;
|
wolffd@0
|
51 mu = 0;
|
wolffd@0
|
52 end
|
wolffd@0
|
53
|
wolffd@0
|
54 [errorcode x mu sigma] = distchck(3,x,mu,sigma);
|
wolffd@0
|
55
|
wolffd@0
|
56 if errorcode > 0
|
wolffd@0
|
57 error('Requires non-scalar arguments to match in size.');
|
wolffd@0
|
58 end
|
wolffd@0
|
59
|
wolffd@0
|
60 % Initialize P to zero.
|
wolffd@0
|
61 p = zeros(size(x));
|
wolffd@0
|
62
|
wolffd@0
|
63 % Return NaN if SIGMA is not positive.
|
wolffd@0
|
64 k1 = find(sigma <= 0);
|
wolffd@0
|
65 if any(k1)
|
wolffd@0
|
66 tmp = NaN;
|
wolffd@0
|
67 p(k1) = tmp(ones(size(k1)));
|
wolffd@0
|
68 end
|
wolffd@0
|
69
|
wolffd@0
|
70 % Express normal CDF in terms of the error function.
|
wolffd@0
|
71 k = find(sigma > 0);
|
wolffd@0
|
72 if any(k)
|
wolffd@0
|
73 p(k) = 0.5 * erfc( - (x(k) - mu(k)) ./ (sigma(k) * sqrt(2)));
|
wolffd@0
|
74 end
|
wolffd@0
|
75
|
wolffd@0
|
76 % Make sure that round-off errors never make P greater than 1.
|
wolffd@0
|
77 k2 = find(p > 1);
|
wolffd@0
|
78 if any(k2)
|
wolffd@0
|
79 p(k2) = ones(size(k2));
|
wolffd@0
|
80 end
|
wolffd@0
|
81
|
wolffd@0
|
82 %%%%%%%%
|
wolffd@0
|
83
|
wolffd@0
|
84 function x = norminv(p,mu,sigma);
|
wolffd@0
|
85 %NORMINV Inverse of the normal cumulative distribution function (cdf).
|
wolffd@0
|
86 % X = NORMINV(P,MU,SIGMA) finds the inverse of the normal cdf with
|
wolffd@0
|
87 % mean, MU, and standard deviation, SIGMA.
|
wolffd@0
|
88 %
|
wolffd@0
|
89 % The size of X is the common size of the input arguments. A scalar input
|
wolffd@0
|
90 % functions as a constant matrix of the same size as the other inputs.
|
wolffd@0
|
91 %
|
wolffd@0
|
92 % Default values for MU and SIGMA are 0 and 1 respectively.
|
wolffd@0
|
93
|
wolffd@0
|
94 % References:
|
wolffd@0
|
95 % [1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical
|
wolffd@0
|
96 % Functions", Government Printing Office, 1964, 7.1.1 and 26.2.2
|
wolffd@0
|
97
|
wolffd@0
|
98 % Copyright (c) 1993-98 by The MathWorks, Inc.
|
wolffd@0
|
99 % $Revision: 1.1.1.1 $ $Date: 2005/04/26 02:29:18 $
|
wolffd@0
|
100
|
wolffd@0
|
101 if nargin < 3,
|
wolffd@0
|
102 sigma = 1;
|
wolffd@0
|
103 end
|
wolffd@0
|
104
|
wolffd@0
|
105 if nargin < 2;
|
wolffd@0
|
106 mu = 0;
|
wolffd@0
|
107 end
|
wolffd@0
|
108
|
wolffd@0
|
109 [errorcode p mu sigma] = distchck(3,p,mu,sigma);
|
wolffd@0
|
110
|
wolffd@0
|
111 if errorcode > 0
|
wolffd@0
|
112 error('Requires non-scalar arguments to match in size.');
|
wolffd@0
|
113 end
|
wolffd@0
|
114
|
wolffd@0
|
115 % Allocate space for x.
|
wolffd@0
|
116 x = zeros(size(p));
|
wolffd@0
|
117
|
wolffd@0
|
118 % Return NaN if the arguments are outside their respective limits.
|
wolffd@0
|
119 k = find(sigma <= 0 | p < 0 | p > 1);
|
wolffd@0
|
120 if any(k)
|
wolffd@0
|
121 tmp = NaN;
|
wolffd@0
|
122 x(k) = tmp(ones(size(k)));
|
wolffd@0
|
123 end
|
wolffd@0
|
124
|
wolffd@0
|
125 % Put in the correct values when P is either 0 or 1.
|
wolffd@0
|
126 k = find(p == 0);
|
wolffd@0
|
127 if any(k)
|
wolffd@0
|
128 tmp = Inf;
|
wolffd@0
|
129 x(k) = -tmp(ones(size(k)));
|
wolffd@0
|
130 end
|
wolffd@0
|
131
|
wolffd@0
|
132 k = find(p == 1);
|
wolffd@0
|
133 if any(k)
|
wolffd@0
|
134 tmp = Inf;
|
wolffd@0
|
135 x(k) = tmp(ones(size(k)));
|
wolffd@0
|
136 end
|
wolffd@0
|
137
|
wolffd@0
|
138 % Compute the inverse function for the intermediate values.
|
wolffd@0
|
139 k = find(p > 0 & p < 1 & sigma > 0);
|
wolffd@0
|
140 if any(k),
|
wolffd@0
|
141 x(k) = sqrt(2) * sigma(k) .* erfinv(2 * p(k) - 1) + mu(k);
|
wolffd@0
|
142 end
|