wolffd@0
|
1 function [W, Xi, Diagnostics] = mlr_train(X, Y, Cslack, varargin)
|
wolffd@0
|
2 %
|
wolffd@0
|
3 % [W, Xi, D] = mlr_train(X, Y, C,...)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % X = d*n data matrix
|
wolffd@0
|
6 % Y = either n-by-1 label of vectors
|
wolffd@0
|
7 % OR
|
wolffd@0
|
8 % n-by-2 cell array where
|
wolffd@0
|
9 % Y{q,1} contains relevant indices for q, and
|
wolffd@0
|
10 % Y{q,2} contains irrelevant indices for q
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % C >= 0 slack trade-off parameter (default=1)
|
wolffd@0
|
13 %
|
wolffd@0
|
14 % W = the learned metric
|
wolffd@0
|
15 % Xi = slack value on the learned metric
|
wolffd@0
|
16 % D = diagnostics
|
wolffd@0
|
17 %
|
wolffd@0
|
18 % Optional arguments:
|
wolffd@0
|
19 %
|
wolffd@0
|
20 % [W, Xi, D] = mlr_train(X, Y, C, LOSS)
|
wolffd@0
|
21 % where LOSS is one of:
|
wolffd@0
|
22 % 'AUC': Area under ROC curve (default)
|
wolffd@0
|
23 % 'KNN': KNN accuracy
|
wolffd@0
|
24 % 'Prec@k': Precision-at-k
|
wolffd@0
|
25 % 'MAP': Mean Average Precision
|
wolffd@0
|
26 % 'MRR': Mean Reciprocal Rank
|
wolffd@0
|
27 % 'NDCG': Normalized Discounted Cumulative Gain
|
wolffd@0
|
28 %
|
wolffd@0
|
29 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k)
|
wolffd@0
|
30 % where k is the number of neighbors for Prec@k or NDCG
|
wolffd@0
|
31 % (default=3)
|
wolffd@0
|
32 %
|
wolffd@0
|
33 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG)
|
wolffd@0
|
34 % where REG defines the regularization on W, and is one of:
|
wolffd@0
|
35 % 0: no regularization
|
wolffd@0
|
36 % 1: 1-norm: trace(W) (default)
|
wolffd@0
|
37 % 2: 2-norm: trace(W' * W)
|
wolffd@0
|
38 % 3: Kernel: trace(W * X), assumes X is square and positive-definite
|
wolffd@0
|
39 %
|
wolffd@0
|
40 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal)
|
wolffd@0
|
41 % Diagonal = 0: learn a full d-by-d W (default)
|
wolffd@0
|
42 % Diagonal = 1: learn diagonally-constrained W (d-by-1)
|
wolffd@0
|
43 %
|
wolffd@0
|
44 % [W, Xi, D] = mlr_train(X, Y, C, LOSS, k, REG, Diagonal, B)
|
wolffd@0
|
45 % where B > 0 enables stochastic optimization with batch size B
|
wolffd@0
|
46 %
|
wolffd@0
|
47
|
wolffd@0
|
48 TIME_START = tic();
|
wolffd@0
|
49
|
wolffd@0
|
50 global C;
|
wolffd@0
|
51 C = Cslack;
|
wolffd@0
|
52
|
wolffd@0
|
53 [d,n,m] = size(X);
|
wolffd@0
|
54
|
wolffd@0
|
55 if m > 1
|
wolffd@0
|
56 MKL = 1;
|
wolffd@0
|
57 else
|
wolffd@0
|
58 MKL = 0;
|
wolffd@0
|
59 end
|
wolffd@0
|
60
|
wolffd@0
|
61 if nargin < 3
|
wolffd@0
|
62 C = 1;
|
wolffd@0
|
63 end
|
wolffd@0
|
64
|
wolffd@0
|
65 %%%
|
wolffd@0
|
66 % Default options:
|
wolffd@0
|
67
|
wolffd@0
|
68 global CP SO PSI REG FEASIBLE LOSS DISTANCE SETDISTANCE CPGRADIENT;
|
wolffd@0
|
69 global FEASIBLE_COUNT;
|
wolffd@0
|
70 FEASIBLE_COUNT = 0;
|
wolffd@0
|
71
|
wolffd@0
|
72 CP = @cuttingPlaneFull;
|
wolffd@0
|
73 SO = @separationOracleAUC;
|
wolffd@0
|
74 PSI = @metricPsiPO;
|
wolffd@0
|
75
|
wolffd@0
|
76 if ~MKL
|
wolffd@0
|
77 INIT = @initializeFull;
|
wolffd@0
|
78 REG = @regularizeTraceFull;
|
wolffd@0
|
79 FEASIBLE = @feasibleFull;
|
wolffd@0
|
80 CPGRADIENT = @cpGradientFull;
|
wolffd@0
|
81 DISTANCE = @distanceFull;
|
wolffd@0
|
82 SETDISTANCE = @setDistanceFull;
|
wolffd@0
|
83 LOSS = @lossHinge;
|
wolffd@0
|
84 Regularizer = 'Trace';
|
wolffd@0
|
85 else
|
wolffd@0
|
86 INIT = @initializeFullMKL;
|
wolffd@0
|
87 REG = @regularizeMKLFull;
|
wolffd@0
|
88 FEASIBLE = @feasibleFullMKL;
|
wolffd@0
|
89 CPGRADIENT = @cpGradientFullMKL;
|
wolffd@0
|
90 DISTANCE = @distanceFullMKL;
|
wolffd@0
|
91 SETDISTANCE = @setDistanceFullMKL;
|
wolffd@0
|
92 LOSS = @lossHingeFullMKL;
|
wolffd@0
|
93 Regularizer = 'Trace';
|
wolffd@0
|
94 end
|
wolffd@0
|
95
|
wolffd@0
|
96
|
wolffd@0
|
97 Loss = 'AUC';
|
wolffd@0
|
98 Feature = 'metricPsiPO';
|
wolffd@0
|
99
|
wolffd@0
|
100
|
wolffd@0
|
101 %%%
|
wolffd@0
|
102 % Default k for prec@k, ndcg
|
wolffd@0
|
103 k = 3;
|
wolffd@0
|
104
|
wolffd@0
|
105 %%%
|
wolffd@0
|
106 % Stochastic violator selection?
|
wolffd@0
|
107 STOCHASTIC = 0;
|
wolffd@0
|
108 batchSize = n;
|
wolffd@0
|
109 SAMPLES = 1:n;
|
wolffd@0
|
110
|
wolffd@0
|
111
|
wolffd@0
|
112 if nargin > 3
|
wolffd@0
|
113 switch lower(varargin{1})
|
wolffd@0
|
114 case {'auc'}
|
wolffd@0
|
115 SO = @separationOracleAUC;
|
wolffd@0
|
116 PSI = @metricPsiPO;
|
wolffd@0
|
117 Loss = 'AUC';
|
wolffd@0
|
118 Feature = 'metricPsiPO';
|
wolffd@0
|
119 case {'knn'}
|
wolffd@0
|
120 SO = @separationOracleKNN;
|
wolffd@0
|
121 PSI = @metricPsiPO;
|
wolffd@0
|
122 Loss = 'KNN';
|
wolffd@0
|
123 Feature = 'metricPsiPO';
|
wolffd@0
|
124 case {'prec@k'}
|
wolffd@0
|
125 SO = @separationOraclePrecAtK;
|
wolffd@0
|
126 PSI = @metricPsiPO;
|
wolffd@0
|
127 Loss = 'Prec@k';
|
wolffd@0
|
128 Feature = 'metricPsiPO';
|
wolffd@0
|
129 case {'map'}
|
wolffd@0
|
130 SO = @separationOracleMAP;
|
wolffd@0
|
131 PSI = @metricPsiPO;
|
wolffd@0
|
132 Loss = 'MAP';
|
wolffd@0
|
133 Feature = 'metricPsiPO';
|
wolffd@0
|
134 case {'mrr'}
|
wolffd@0
|
135 SO = @separationOracleMRR;
|
wolffd@0
|
136 PSI = @metricPsiPO;
|
wolffd@0
|
137 Loss = 'MRR';
|
wolffd@0
|
138 Feature = 'metricPsiPO';
|
wolffd@0
|
139 case {'ndcg'}
|
wolffd@0
|
140 SO = @separationOracleNDCG;
|
wolffd@0
|
141 PSI = @metricPsiPO;
|
wolffd@0
|
142 Loss = 'NDCG';
|
wolffd@0
|
143 Feature = 'metricPsiPO';
|
wolffd@0
|
144 otherwise
|
wolffd@0
|
145 error('MLR:LOSS', ...
|
wolffd@0
|
146 'Unknown loss function: %s', varargin{1});
|
wolffd@0
|
147 end
|
wolffd@0
|
148 end
|
wolffd@0
|
149
|
wolffd@0
|
150 if nargin > 4
|
wolffd@0
|
151 k = varargin{2};
|
wolffd@0
|
152 end
|
wolffd@0
|
153
|
wolffd@0
|
154 Diagonal = 0;
|
wolffd@0
|
155 if nargin > 6 & varargin{4} > 0
|
wolffd@0
|
156 Diagonal = varargin{4};
|
wolffd@0
|
157
|
wolffd@0
|
158 if ~MKL
|
wolffd@0
|
159 INIT = @initializeDiag;
|
wolffd@0
|
160 REG = @regularizeTraceDiag;
|
wolffd@0
|
161 FEASIBLE = @feasibleDiag;
|
wolffd@0
|
162 CPGRADIENT = @cpGradientDiag;
|
wolffd@0
|
163 DISTANCE = @distanceDiag;
|
wolffd@0
|
164 SETDISTANCE = @setDistanceDiag;
|
wolffd@0
|
165 Regularizer = 'Trace';
|
wolffd@0
|
166 else
|
wolffd@0
|
167 INIT = @initializeDiagMKL;
|
wolffd@0
|
168 REG = @regularizeMKLDiag;
|
wolffd@0
|
169 FEASIBLE = @feasibleDiagMKL;
|
wolffd@0
|
170 CPGRADIENT = @cpGradientDiagMKL;
|
wolffd@0
|
171 DISTANCE = @distanceDiagMKL;
|
wolffd@0
|
172 SETDISTANCE = @setDistanceDiagMKL;
|
wolffd@0
|
173 LOSS = @lossHingeDiagMKL;
|
wolffd@0
|
174 Regularizer = 'Trace';
|
wolffd@0
|
175 end
|
wolffd@0
|
176 end
|
wolffd@0
|
177
|
wolffd@0
|
178 if nargin > 5
|
wolffd@0
|
179 switch(varargin{3})
|
wolffd@0
|
180 case {0}
|
wolffd@0
|
181 REG = @regularizeNone;
|
wolffd@0
|
182 Regularizer = 'None';
|
wolffd@0
|
183
|
wolffd@0
|
184 case {1}
|
wolffd@0
|
185 if MKL
|
wolffd@0
|
186 if Diagonal == 0
|
wolffd@0
|
187 REG = @regularizeMKLFull;
|
wolffd@0
|
188 elseif Diagonal == 1
|
wolffd@0
|
189 REG = @regularizeMKLDiag;
|
wolffd@0
|
190 end
|
wolffd@0
|
191 else
|
wolffd@0
|
192 if Diagonal
|
wolffd@0
|
193 REG = @regularizeTraceDiag;
|
wolffd@0
|
194 else
|
wolffd@0
|
195 REG = @regularizeTraceFull;
|
wolffd@0
|
196 end
|
wolffd@0
|
197 end
|
wolffd@0
|
198 Regularizer = 'Trace';
|
wolffd@0
|
199
|
wolffd@0
|
200 case {2}
|
wolffd@0
|
201 if Diagonal
|
wolffd@0
|
202 REG = @regularizeTwoDiag;
|
wolffd@0
|
203 else
|
wolffd@0
|
204 REG = @regularizeTwoFull;
|
wolffd@0
|
205 end
|
wolffd@0
|
206 Regularizer = '2-norm';
|
wolffd@0
|
207
|
wolffd@0
|
208 case {3}
|
wolffd@0
|
209 if MKL
|
wolffd@0
|
210 if Diagonal == 0
|
wolffd@0
|
211 REG = @regularizeMKLFull;
|
wolffd@0
|
212 elseif Diagonal == 1
|
wolffd@0
|
213 REG = @regularizeMKLDiag;
|
wolffd@0
|
214 end
|
wolffd@0
|
215 else
|
wolffd@0
|
216 if Diagonal
|
wolffd@0
|
217 REG = @regularizeMKLDiag;
|
wolffd@0
|
218 else
|
wolffd@0
|
219 REG = @regularizeKernel;
|
wolffd@0
|
220 end
|
wolffd@0
|
221 end
|
wolffd@0
|
222 Regularizer = 'Kernel';
|
wolffd@0
|
223
|
wolffd@0
|
224 otherwise
|
wolffd@0
|
225 error('MLR:REGULARIZER', ...
|
wolffd@0
|
226 'Unknown regularization: %s', varargin{3});
|
wolffd@0
|
227 end
|
wolffd@0
|
228 end
|
wolffd@0
|
229
|
wolffd@0
|
230
|
wolffd@0
|
231 % Are we in stochastic optimization mode?
|
wolffd@0
|
232 if nargin > 7 && varargin{5} > 0
|
wolffd@0
|
233 if varargin{5} < n
|
wolffd@0
|
234 STOCHASTIC = 1;
|
wolffd@0
|
235 CP = @cuttingPlaneRandom;
|
wolffd@0
|
236 batchSize = varargin{5};
|
wolffd@0
|
237 end
|
wolffd@0
|
238 end
|
wolffd@0
|
239 % Algorithm
|
wolffd@0
|
240 %
|
wolffd@0
|
241 % Working <- []
|
wolffd@0
|
242 %
|
wolffd@0
|
243 % repeat:
|
wolffd@0
|
244 % (W, Xi) <- solver(X, Y, C, Working)
|
wolffd@0
|
245 %
|
wolffd@0
|
246 % for i = 1:|X|
|
wolffd@0
|
247 % y^_i <- argmax_y^ ( Delta(y*_i, y^) + w' Psi(x_i, y^) )
|
wolffd@0
|
248 %
|
wolffd@0
|
249 % Working <- Working + (y^_1,y^_2,...,y^_n)
|
wolffd@0
|
250 % until mean(Delta(y*_i, y_i)) - mean(w' (Psi(x_i,y_i) - Psi(x_i,y^_i)))
|
wolffd@0
|
251 % <= Xi + epsilon
|
wolffd@0
|
252
|
wolffd@0
|
253 global DEBUG;
|
wolffd@0
|
254
|
wolffd@0
|
255 if isempty(DEBUG)
|
wolffd@0
|
256 DEBUG = 0;
|
wolffd@0
|
257 end
|
wolffd@0
|
258
|
wolffd@0
|
259 %%%
|
wolffd@0
|
260 % Timer to eliminate old constraints
|
wolffd@0
|
261 ConstraintClock = 100;
|
wolffd@0
|
262
|
wolffd@0
|
263 %%%
|
wolffd@0
|
264 % Convergence criteria for worst-violated constraint
|
wolffd@0
|
265 E = 1e-3;
|
wolffd@0
|
266
|
wolffd@0
|
267 % Initialize
|
wolffd@0
|
268 W = INIT(X);
|
wolffd@0
|
269
|
wolffd@0
|
270 ClassScores = [];
|
wolffd@0
|
271
|
wolffd@0
|
272 if isa(Y, 'double')
|
wolffd@0
|
273 Ypos = [];
|
wolffd@0
|
274 Yneg = [];
|
wolffd@0
|
275 ClassScores = synthesizeRelevance(Y);
|
wolffd@0
|
276
|
wolffd@0
|
277 elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 2
|
wolffd@0
|
278 dbprint(1, 'Using supplied Ypos/Yneg');
|
wolffd@0
|
279 Ypos = Y(:,1);
|
wolffd@0
|
280 Yneg = Y(:,2);
|
wolffd@0
|
281
|
wolffd@0
|
282 % Compute the valid samples
|
wolffd@0
|
283 SAMPLES = find( ~(cellfun(@isempty, Y(:,1)) | cellfun(@isempty, Y(:,2))));
|
wolffd@0
|
284 elseif isa(Y, 'cell') && size(Y,1) == n && size(Y,2) == 1
|
wolffd@0
|
285 dbprint(1, 'Using supplied Ypos/synthesized Yneg');
|
wolffd@0
|
286 Ypos = Y(:,1);
|
wolffd@0
|
287 Yneg = [];
|
wolffd@0
|
288 SAMPLES = find( ~(cellfun(@isempty, Y(:,1))));
|
wolffd@0
|
289 else
|
wolffd@0
|
290 error('MLR:LABELS', 'Incorrect format for Y.');
|
wolffd@0
|
291 end
|
wolffd@0
|
292
|
wolffd@0
|
293 %%
|
wolffd@0
|
294 % If we don't have enough data to make the batch, cut the batch
|
wolffd@0
|
295 batchSize = min([batchSize, length(SAMPLES)]);
|
wolffd@0
|
296
|
wolffd@0
|
297
|
wolffd@0
|
298 Diagnostics = struct( 'loss', Loss, ... % Which loss are we optimizing?
|
wolffd@0
|
299 'feature', Feature, ... % Which ranking feature is used?
|
wolffd@0
|
300 'k', k, ... % What is the ranking length?
|
wolffd@0
|
301 'regularizer', Regularizer, ... % What regularization is used?
|
wolffd@0
|
302 'diagonal', Diagonal, ... % 0 for full metric, 1 for diagonal
|
wolffd@0
|
303 'num_calls_SO', 0, ... % Calls to separation oracle
|
wolffd@0
|
304 'num_calls_solver', 0, ... % Calls to solver
|
wolffd@0
|
305 'time_SO', 0, ... % Time in separation oracle
|
wolffd@0
|
306 'time_solver', 0, ... % Time in solver
|
wolffd@0
|
307 'time_total', 0, ... % Total time
|
wolffd@0
|
308 'f', [], ... % Objective value
|
wolffd@0
|
309 'num_steps', [], ... % Number of steps for each solver run
|
wolffd@0
|
310 'num_constraints', [], ... % Number of constraints for each run
|
wolffd@0
|
311 'Xi', [], ... % Slack achieved for each run
|
wolffd@0
|
312 'Delta', [], ... % Mean loss for each SO call
|
wolffd@0
|
313 'gap', [], ... % Gap between loss and slack
|
wolffd@0
|
314 'C', C, ... % Slack trade-off
|
wolffd@0
|
315 'epsilon', E, ... % Convergence threshold
|
wolffd@0
|
316 'feasible_count', 0, ... % Counter for projections
|
wolffd@0
|
317 'constraint_timer', ConstraintClock); % Time before evicting old constraints
|
wolffd@0
|
318
|
wolffd@0
|
319
|
wolffd@0
|
320
|
wolffd@0
|
321 global PsiR;
|
wolffd@0
|
322 global PsiClock;
|
wolffd@0
|
323
|
wolffd@0
|
324 PsiR = {};
|
wolffd@0
|
325 PsiClock = [];
|
wolffd@0
|
326
|
wolffd@0
|
327 Xi = -Inf;
|
wolffd@0
|
328 Margins = [];
|
wolffd@0
|
329
|
wolffd@0
|
330 if STOCHASTIC
|
wolffd@0
|
331 dbprint(1, 'STOCHASTIC OPTIMIZATION: Batch size is %d/%d', batchSize, n);
|
wolffd@0
|
332 end
|
wolffd@0
|
333
|
wolffd@0
|
334 while 1
|
wolffd@0
|
335 dbprint(1, 'Round %03d', Diagnostics.num_calls_solver);
|
wolffd@0
|
336 % Generate a constraint set
|
wolffd@0
|
337 Termination = 0;
|
wolffd@0
|
338
|
wolffd@0
|
339
|
wolffd@0
|
340 dbprint(2, 'Calling separation oracle...');
|
wolffd@0
|
341
|
wolffd@0
|
342 [PsiNew, Mnew, SO_time] = CP(k, X, W, Ypos, Yneg, batchSize, SAMPLES, ClassScores);
|
wolffd@0
|
343 Termination = LOSS(W, PsiNew, Mnew, 0);
|
wolffd@0
|
344
|
wolffd@0
|
345 Diagnostics.num_calls_SO = Diagnostics.num_calls_SO + 1;
|
wolffd@0
|
346 Diagnostics.time_SO = Diagnostics.time_SO + SO_time;
|
wolffd@0
|
347
|
wolffd@0
|
348 Margins = cat(1, Margins, Mnew);
|
wolffd@0
|
349 PsiR = cat(1, PsiR, PsiNew);
|
wolffd@0
|
350 PsiClock = cat(1, PsiClock, 0);
|
wolffd@0
|
351
|
wolffd@0
|
352 dbprint(2, '\n\tActive constraints : %d', length(PsiClock));
|
wolffd@0
|
353 dbprint(2, '\t Mean loss : %0.4f', Mnew);
|
wolffd@0
|
354 dbprint(2, '\t Termination -Xi < E : %0.4f <? %.04f\n', Termination - Xi, E);
|
wolffd@0
|
355
|
wolffd@0
|
356 Diagnostics.gap = cat(1, Diagnostics.gap, Termination - Xi);
|
wolffd@0
|
357 Diagnostics.Delta = cat(1, Diagnostics.Delta, Mnew);
|
wolffd@0
|
358
|
wolffd@0
|
359 if Termination <= Xi + E
|
wolffd@0
|
360 dbprint(1, 'Done.');
|
wolffd@0
|
361 break;
|
wolffd@0
|
362 end
|
wolffd@0
|
363
|
wolffd@0
|
364 dbprint(1, 'Calling solver...');
|
wolffd@0
|
365 PsiClock = PsiClock + 1;
|
wolffd@0
|
366 Solver_time = tic();
|
wolffd@0
|
367 [W, Xi, Dsolver] = mlr_solver(C, Margins, W, X);
|
wolffd@0
|
368 Diagnostics.time_solver = Diagnostics.time_solver + toc(Solver_time);
|
wolffd@0
|
369 Diagnostics.num_calls_solver = Diagnostics.num_calls_solver + 1;
|
wolffd@0
|
370
|
wolffd@0
|
371 Diagnostics.Xi = cat(1, Diagnostics.Xi, Xi);
|
wolffd@0
|
372 Diagnostics.f = cat(1, Diagnostics.f, Dsolver.f);
|
wolffd@0
|
373 Diagnostics.num_steps = cat(1, Diagnostics.num_steps, Dsolver.num_steps);
|
wolffd@0
|
374
|
wolffd@0
|
375 %%%
|
wolffd@0
|
376 % Cull the old constraints
|
wolffd@0
|
377 GC = PsiClock < ConstraintClock;
|
wolffd@0
|
378 Margins = Margins(GC);
|
wolffd@0
|
379 PsiR = PsiR(GC);
|
wolffd@0
|
380 PsiClock = PsiClock(GC);
|
wolffd@0
|
381
|
wolffd@0
|
382 Diagnostics.num_constraints = cat(1, Diagnostics.num_constraints, length(PsiR));
|
wolffd@0
|
383 end
|
wolffd@0
|
384
|
wolffd@0
|
385
|
wolffd@0
|
386 % Finish diagnostics
|
wolffd@0
|
387
|
wolffd@0
|
388 Diagnostics.time_total = toc(TIME_START);
|
wolffd@0
|
389 Diagnostics.feasible_count = FEASIBLE_COUNT;
|
wolffd@0
|
390 end
|
wolffd@0
|
391
|
wolffd@0
|
392
|
wolffd@0
|
393 function ClassScores = synthesizeRelevance(Y)
|
wolffd@0
|
394
|
wolffd@0
|
395 classes = unique(Y);
|
wolffd@0
|
396 nClasses = length(classes);
|
wolffd@0
|
397
|
wolffd@0
|
398 ClassScores = struct( 'Y', Y, ...
|
wolffd@0
|
399 'classes', classes, ...
|
wolffd@0
|
400 'Ypos', [], ...
|
wolffd@0
|
401 'Yneg', []);
|
wolffd@0
|
402
|
wolffd@0
|
403 Ypos = cell(nClasses, 1);
|
wolffd@0
|
404 Yneg = cell(nClasses, 1);
|
wolffd@0
|
405 for c = 1:nClasses
|
wolffd@0
|
406 Ypos{c} = (Y == classes(c));
|
wolffd@0
|
407 Yneg{c} = ~Ypos{c};
|
wolffd@0
|
408 end
|
wolffd@0
|
409
|
wolffd@0
|
410 ClassScores.Ypos = Ypos;
|
wolffd@0
|
411 ClassScores.Yneg = Yneg;
|
wolffd@0
|
412
|
wolffd@0
|
413 end
|