wolffd@0
|
1 /***********************************************************************/
|
wolffd@0
|
2 /* */
|
wolffd@0
|
3 /* svm_loqo.c */
|
wolffd@0
|
4 /* */
|
wolffd@0
|
5 /* Interface to the PR_LOQO optimization package for SVM. */
|
wolffd@0
|
6 /* */
|
wolffd@0
|
7 /* Author: Thorsten Joachims */
|
wolffd@0
|
8 /* Date: 19.07.99 */
|
wolffd@0
|
9 /* */
|
wolffd@0
|
10 /* Copyright (c) 1999 Universitaet Dortmund - All rights reserved */
|
wolffd@0
|
11 /* */
|
wolffd@0
|
12 /* This software is available for non-commercial use only. It must */
|
wolffd@0
|
13 /* not be modified and distributed without prior permission of the */
|
wolffd@0
|
14 /* author. The author is not responsible for implications from the */
|
wolffd@0
|
15 /* use of this software. */
|
wolffd@0
|
16 /* */
|
wolffd@0
|
17 /***********************************************************************/
|
wolffd@0
|
18
|
wolffd@0
|
19 # include <math.h>
|
wolffd@0
|
20 # include "pr_loqo/pr_loqo.h"
|
wolffd@0
|
21 # include "svm_common.h"
|
wolffd@0
|
22
|
wolffd@0
|
23 /* Common Block Declarations */
|
wolffd@0
|
24
|
wolffd@0
|
25 long verbosity;
|
wolffd@0
|
26
|
wolffd@0
|
27 /* /////////////////////////////////////////////////////////////// */
|
wolffd@0
|
28
|
wolffd@0
|
29 # define DEF_PRECISION_LINEAR 1E-8
|
wolffd@0
|
30 # define DEF_PRECISION_NONLINEAR 1E-14
|
wolffd@0
|
31
|
wolffd@0
|
32 double *optimize_qp();
|
wolffd@0
|
33 double *primal=0,*dual=0;
|
wolffd@0
|
34 double init_margin=0.15;
|
wolffd@0
|
35 long init_iter=500,precision_violations=0;
|
wolffd@0
|
36 double model_b;
|
wolffd@0
|
37 double opt_precision=DEF_PRECISION_LINEAR;
|
wolffd@0
|
38
|
wolffd@0
|
39 /* /////////////////////////////////////////////////////////////// */
|
wolffd@0
|
40
|
wolffd@0
|
41 void *my_malloc();
|
wolffd@0
|
42
|
wolffd@0
|
43 double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm)
|
wolffd@0
|
44 QP *qp;
|
wolffd@0
|
45 double *epsilon_crit;
|
wolffd@0
|
46 long nx; /* Maximum number of variables in QP */
|
wolffd@0
|
47 double *threshold;
|
wolffd@0
|
48 LEARN_PARM *learn_parm;
|
wolffd@0
|
49 /* start the optimizer and return the optimal values */
|
wolffd@0
|
50 {
|
wolffd@0
|
51 register long i,j,result;
|
wolffd@0
|
52 double margin,obj_before,obj_after;
|
wolffd@0
|
53 double sigdig,dist,epsilon_loqo;
|
wolffd@0
|
54 int iter;
|
wolffd@0
|
55
|
wolffd@0
|
56 if(!primal) { /* allocate memory at first call */
|
wolffd@0
|
57 primal=(double *)my_malloc(sizeof(double)*nx*3);
|
wolffd@0
|
58 dual=(double *)my_malloc(sizeof(double)*(nx*2+1));
|
wolffd@0
|
59 }
|
wolffd@0
|
60
|
wolffd@0
|
61 if(verbosity>=4) { /* really verbose */
|
wolffd@0
|
62 printf("\n\n");
|
wolffd@0
|
63 for(i=0;i<qp->opt_n;i++) {
|
wolffd@0
|
64 printf("%f: ",qp->opt_g0[i]);
|
wolffd@0
|
65 for(j=0;j<qp->opt_n;j++) {
|
wolffd@0
|
66 printf("%f ",qp->opt_g[i*qp->opt_n+j]);
|
wolffd@0
|
67 }
|
wolffd@0
|
68 printf(": a%ld=%.10f < %f",i,qp->opt_xinit[i],qp->opt_up[i]);
|
wolffd@0
|
69 printf(": y=%f\n",qp->opt_ce[i]);
|
wolffd@0
|
70 }
|
wolffd@0
|
71 for(j=0;j<qp->opt_m;j++) {
|
wolffd@0
|
72 printf("EQ-%ld: %f*a0",j,qp->opt_ce[j]);
|
wolffd@0
|
73 for(i=1;i<qp->opt_n;i++) {
|
wolffd@0
|
74 printf(" + %f*a%ld",qp->opt_ce[i],i);
|
wolffd@0
|
75 }
|
wolffd@0
|
76 printf(" = %f\n\n",-qp->opt_ce0[0]);
|
wolffd@0
|
77 }
|
wolffd@0
|
78 }
|
wolffd@0
|
79
|
wolffd@0
|
80 obj_before=0; /* calculate objective before optimization */
|
wolffd@0
|
81 for(i=0;i<qp->opt_n;i++) {
|
wolffd@0
|
82 obj_before+=(qp->opt_g0[i]*qp->opt_xinit[i]);
|
wolffd@0
|
83 obj_before+=(0.5*qp->opt_xinit[i]*qp->opt_xinit[i]*qp->opt_g[i*qp->opt_n+i]);
|
wolffd@0
|
84 for(j=0;j<i;j++) {
|
wolffd@0
|
85 obj_before+=(qp->opt_xinit[j]*qp->opt_xinit[i]*qp->opt_g[j*qp->opt_n+i]);
|
wolffd@0
|
86 }
|
wolffd@0
|
87 }
|
wolffd@0
|
88
|
wolffd@0
|
89 result=STILL_RUNNING;
|
wolffd@0
|
90 qp->opt_ce0[0]*=(-1.0);
|
wolffd@0
|
91 /* Run pr_loqo. If a run fails, try again with parameters which lead */
|
wolffd@0
|
92 /* to a slower, but more robust setting. */
|
wolffd@0
|
93 for(margin=init_margin,iter=init_iter;
|
wolffd@0
|
94 (margin<=0.9999999) && (result!=OPTIMAL_SOLUTION);) {
|
wolffd@0
|
95 sigdig=-log10(opt_precision);
|
wolffd@0
|
96
|
wolffd@0
|
97 result=pr_loqo((int)qp->opt_n,(int)qp->opt_m,
|
wolffd@0
|
98 (double *)qp->opt_g0,(double *)qp->opt_g,
|
wolffd@0
|
99 (double *)qp->opt_ce,(double *)qp->opt_ce0,
|
wolffd@0
|
100 (double *)qp->opt_low,(double *)qp->opt_up,
|
wolffd@0
|
101 (double *)primal,(double *)dual,
|
wolffd@0
|
102 (int)(verbosity-2),
|
wolffd@0
|
103 (double)sigdig,(int)iter,
|
wolffd@0
|
104 (double)margin,(double)(qp->opt_up[0])/4.0,(int)0);
|
wolffd@0
|
105
|
wolffd@0
|
106 if(isnan(dual[0])) { /* check for choldc problem */
|
wolffd@0
|
107 if(verbosity>=2) {
|
wolffd@0
|
108 printf("NOTICE: Restarting PR_LOQO with more conservative parameters.\n");
|
wolffd@0
|
109 }
|
wolffd@0
|
110 if(init_margin<0.80) { /* become more conservative in general */
|
wolffd@0
|
111 init_margin=(4.0*margin+1.0)/5.0;
|
wolffd@0
|
112 }
|
wolffd@0
|
113 margin=(margin+1.0)/2.0;
|
wolffd@0
|
114 (opt_precision)*=10.0; /* reduce precision */
|
wolffd@0
|
115 if(verbosity>=2) {
|
wolffd@0
|
116 printf("NOTICE: Reducing precision of PR_LOQO.\n");
|
wolffd@0
|
117 }
|
wolffd@0
|
118 }
|
wolffd@0
|
119 else if(result!=OPTIMAL_SOLUTION) {
|
wolffd@0
|
120 iter+=2000;
|
wolffd@0
|
121 init_iter+=10;
|
wolffd@0
|
122 (opt_precision)*=10.0; /* reduce precision */
|
wolffd@0
|
123 if(verbosity>=2) {
|
wolffd@0
|
124 printf("NOTICE: Reducing precision of PR_LOQO due to (%ld).\n",result);
|
wolffd@0
|
125 }
|
wolffd@0
|
126 }
|
wolffd@0
|
127 }
|
wolffd@0
|
128
|
wolffd@0
|
129 if(qp->opt_m) /* Thanks to Alex Smola for this hint */
|
wolffd@0
|
130 model_b=dual[0];
|
wolffd@0
|
131 else
|
wolffd@0
|
132 model_b=0;
|
wolffd@0
|
133
|
wolffd@0
|
134 /* Check the precision of the alphas. If results of current optimization */
|
wolffd@0
|
135 /* violate KT-Conditions, relax the epsilon on the bounds on alphas. */
|
wolffd@0
|
136 epsilon_loqo=1E-10;
|
wolffd@0
|
137 for(i=0;i<qp->opt_n;i++) {
|
wolffd@0
|
138 dist=-model_b*qp->opt_ce[i];
|
wolffd@0
|
139 dist+=(qp->opt_g0[i]+1.0);
|
wolffd@0
|
140 for(j=0;j<i;j++) {
|
wolffd@0
|
141 dist+=(primal[j]*qp->opt_g[j*qp->opt_n+i]);
|
wolffd@0
|
142 }
|
wolffd@0
|
143 for(j=i;j<qp->opt_n;j++) {
|
wolffd@0
|
144 dist+=(primal[j]*qp->opt_g[i*qp->opt_n+j]);
|
wolffd@0
|
145 }
|
wolffd@0
|
146 /* printf("LOQO: a[%d]=%f, dist=%f, b=%f\n",i,primal[i],dist,dual[0]); */
|
wolffd@0
|
147 if((primal[i]<(qp->opt_up[i]-epsilon_loqo)) && (dist < (1.0-(*epsilon_crit)))) {
|
wolffd@0
|
148 epsilon_loqo=(qp->opt_up[i]-primal[i])*2.0;
|
wolffd@0
|
149 }
|
wolffd@0
|
150 else if((primal[i]>(0+epsilon_loqo)) && (dist > (1.0+(*epsilon_crit)))) {
|
wolffd@0
|
151 epsilon_loqo=primal[i]*2.0;
|
wolffd@0
|
152 }
|
wolffd@0
|
153 }
|
wolffd@0
|
154
|
wolffd@0
|
155 for(i=0;i<qp->opt_n;i++) { /* clip alphas to bounds */
|
wolffd@0
|
156 if(primal[i]<=(0+epsilon_loqo)) {
|
wolffd@0
|
157 primal[i]=0;
|
wolffd@0
|
158 }
|
wolffd@0
|
159 else if(primal[i]>=(qp->opt_up[i]-epsilon_loqo)) {
|
wolffd@0
|
160 primal[i]=qp->opt_up[i];
|
wolffd@0
|
161 }
|
wolffd@0
|
162 }
|
wolffd@0
|
163
|
wolffd@0
|
164 obj_after=0; /* calculate objective after optimization */
|
wolffd@0
|
165 for(i=0;i<qp->opt_n;i++) {
|
wolffd@0
|
166 obj_after+=(qp->opt_g0[i]*primal[i]);
|
wolffd@0
|
167 obj_after+=(0.5*primal[i]*primal[i]*qp->opt_g[i*qp->opt_n+i]);
|
wolffd@0
|
168 for(j=0;j<i;j++) {
|
wolffd@0
|
169 obj_after+=(primal[j]*primal[i]*qp->opt_g[j*qp->opt_n+i]);
|
wolffd@0
|
170 }
|
wolffd@0
|
171 }
|
wolffd@0
|
172
|
wolffd@0
|
173 /* if optimizer returned NAN values, reset and retry with smaller */
|
wolffd@0
|
174 /* working set. */
|
wolffd@0
|
175 if(isnan(obj_after) || isnan(model_b)) {
|
wolffd@0
|
176 for(i=0;i<qp->opt_n;i++) {
|
wolffd@0
|
177 primal[i]=qp->opt_xinit[i];
|
wolffd@0
|
178 }
|
wolffd@0
|
179 model_b=0;
|
wolffd@0
|
180 if(learn_parm->svm_maxqpsize>2) {
|
wolffd@0
|
181 learn_parm->svm_maxqpsize--; /* decrease size of qp-subproblems */
|
wolffd@0
|
182 }
|
wolffd@0
|
183 }
|
wolffd@0
|
184
|
wolffd@0
|
185 if(obj_after >= obj_before) { /* check whether there was progress */
|
wolffd@0
|
186 (opt_precision)/=100.0;
|
wolffd@0
|
187 precision_violations++;
|
wolffd@0
|
188 if(verbosity>=2) {
|
wolffd@0
|
189 printf("NOTICE: Increasing Precision of PR_LOQO.\n");
|
wolffd@0
|
190 }
|
wolffd@0
|
191 }
|
wolffd@0
|
192
|
wolffd@0
|
193 if(precision_violations > 500) {
|
wolffd@0
|
194 (*epsilon_crit)*=10.0;
|
wolffd@0
|
195 precision_violations=0;
|
wolffd@0
|
196 if(verbosity>=1) {
|
wolffd@0
|
197 printf("\nWARNING: Relaxing epsilon on KT-Conditions.\n");
|
wolffd@0
|
198 }
|
wolffd@0
|
199 }
|
wolffd@0
|
200
|
wolffd@0
|
201 (*threshold)=model_b;
|
wolffd@0
|
202
|
wolffd@0
|
203 if(result!=OPTIMAL_SOLUTION) {
|
wolffd@0
|
204 printf("\nERROR: PR_LOQO did not converge. \n");
|
wolffd@0
|
205 return(qp->opt_xinit);
|
wolffd@0
|
206 }
|
wolffd@0
|
207 else {
|
wolffd@0
|
208 return(primal);
|
wolffd@0
|
209 }
|
wolffd@0
|
210 }
|
wolffd@0
|
211
|