wolffd@0
|
1 function [W visB hidB] = gen_training_krbm(conf,W,mW,train_file,train_label)
|
wolffd@0
|
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
3 % Training Knowledge Based RBM for generative classification %
|
wolffd@0
|
4 % conf: training setting %
|
wolffd@0
|
5 % W: weights of connections %
|
wolffd@0
|
6 % mW: mask of connections %
|
wolffd@0
|
7 % -*-sontran2012-*- %
|
wolffd@0
|
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
9 %% load data
|
wolffd@0
|
10 vars = whos('-file', train_file);
|
wolffd@0
|
11 A = load(train_file,vars(1).name);
|
wolffd@0
|
12 data = A.(vars(1).name);
|
wolffd@0
|
13 vars = whos('-file', train_label);
|
wolffd@0
|
14 A = load(train_label,vars(1).name);
|
wolffd@0
|
15 label = A.(vars(1).name);
|
wolffd@0
|
16 assert(~isempty(data),'[KRBM-GEN] Data is empty');
|
wolffd@0
|
17 assert(size(data,1) == size(label,1),'[KRBM-GEN] Number of data and label mismatch');
|
wolffd@0
|
18 Classes = unique(label)';
|
wolffd@0
|
19 lNum = size(Classes,2);
|
wolffd@0
|
20 data = [data discrete2softmax(label,Classes)]
|
wolffd@0
|
21 %% initialization
|
wolffd@0
|
22 visNum = size(data,2);
|
wolffd@0
|
23 hidNum = conf.hidNum;
|
wolffd@0
|
24 sNum = conf.sNum;
|
wolffd@0
|
25 lr = conf.params(1);
|
wolffd@0
|
26 N = 10; % Number of epoch training with lr_1
|
wolffd@0
|
27 W = [W;0.1*randn(visNum - size(W,1),size(W,2))];
|
wolffd@0
|
28 W = [W 0.1*randn(size(W,1),hidNum-size(W,2))];
|
wolffd@0
|
29
|
wolffd@0
|
30 DW = zeros(size(W));
|
wolffd@0
|
31 visB = zeros(1,visNum);
|
wolffd@0
|
32 DVB = zeros(1,visNum);
|
wolffd@0
|
33 hidB = zeros(1,hidNum);
|
wolffd@0
|
34 DHB = zeros(1,hidNum);
|
wolffd@0
|
35 visP = zeros(sNum,visNum);
|
wolffd@0
|
36 visN = zeros(sNum,visNum);
|
wolffd@0
|
37 visNs = zeros(sNum,visNum);
|
wolffd@0
|
38 hidP = zeros(sNum,hidNum);
|
wolffd@0
|
39 hidPs = zeros(sNum,hidNum);
|
wolffd@0
|
40 hidN = zeros(sNum,hidNum);
|
wolffd@0
|
41 hidNs = zeros(sNum,hidNum);
|
wolffd@0
|
42 %% Reconstruction error & evaluation error & early stopping
|
wolffd@0
|
43 mse = 0;
|
wolffd@0
|
44 omse = 0;
|
wolffd@0
|
45 inc_count = 0;
|
wolffd@0
|
46 MAX_INC = 3; % If the error increase MAX_INC times continuously, then stop training
|
wolffd@0
|
47 %% Average best settings
|
wolffd@0
|
48 n_best = 1;
|
wolffd@0
|
49 aW = size(W);
|
wolffd@0
|
50 aVB = size(visB);
|
wolffd@0
|
51 aHB = size(hidB);
|
wolffd@0
|
52 %% ==================== Start training =========================== %%
|
wolffd@0
|
53 for i=1:conf.eNum
|
wolffd@0
|
54 if i== N+1
|
wolffd@0
|
55 lr = conf.params(2);
|
wolffd@0
|
56 end
|
wolffd@0
|
57 omse = mse;
|
wolffd@0
|
58 mse = 0;
|
wolffd@0
|
59 for j=1:conf.bNum
|
wolffd@0
|
60 visP = data((j-1)*conf.sNum+1:j*conf.sNum,:);
|
wolffd@0
|
61 %up
|
wolffd@0
|
62 hidP = logistic(visP*W + repmat(hidB,sNum,1));
|
wolffd@0
|
63 hidPs = 1*(hidP >rand(sNum,hidNum));
|
wolffd@0
|
64 hidNs = hidPs;
|
wolffd@0
|
65 for k=1:conf.gNum
|
wolffd@0
|
66 % down
|
wolffd@0
|
67 visN = hidNs*W' + repmat(visB,sNum,1);
|
wolffd@0
|
68 visN(:,1:visNum-lNum) = logistic(visN(:,1:visNum-lNum));
|
wolffd@0
|
69 visN(:,visNum-lNum+1:visNum) = softmax_activation(visN(:,visNum-lNum+1:visNum));
|
wolffd@0
|
70 visNs = [1*(visN(:,1:visNum-lNum)>rand(sNum,visNum-lNum)) visN(:,visNum-lNum+1:visNum)];
|
wolffd@0
|
71 if j==5 && k==1, observe_reconstruction(visN(:,1:visNum-lNum),sNum,i,28,28); end
|
wolffd@0
|
72 % up
|
wolffd@0
|
73 hidN = logistic(visNs*W + repmat(hidB,sNum,1));
|
wolffd@0
|
74 hidNs = 1*(hidN>rand(sNum,hidNum));
|
wolffd@0
|
75 end
|
wolffd@0
|
76 % Compute MSE for reconstruction
|
wolffd@0
|
77 rdiff = (visP - visN);
|
wolffd@0
|
78 mse = mse + sum(sum(rdiff.*rdiff))/(sNum*visNum);
|
wolffd@0
|
79 % Update W,visB,hidB
|
wolffd@0
|
80 diff = (visP'*hidP - visNs'*hidN)/sNum;
|
wolffd@0
|
81 DW = lr*(diff - conf.params(4)*W) + conf.params(3)*DW;
|
wolffd@0
|
82 W = W + DW;
|
wolffd@0
|
83 % W = W.*mW;
|
wolffd@0
|
84 DVB = lr*sum(visP - visN,1)/sNum + conf.params(3)*DVB;
|
wolffd@0
|
85 visB = visB + DVB;
|
wolffd@0
|
86 DHB = lr*sum(hidP - hidN,1)/sNum + conf.params(3)*DHB;
|
wolffd@0
|
87 hidB = hidB + DHB;
|
wolffd@0
|
88 end
|
wolffd@0
|
89 if mse > omse
|
wolffd@0
|
90 inc_count = inc_count + 1
|
wolffd@0
|
91 else
|
wolffd@0
|
92 inc_count = 0;
|
wolffd@0
|
93 end
|
wolffd@0
|
94 if inc_count> MAX_INC, break; end;
|
wolffd@0
|
95 fprintf('Epoch %d : MSE = %f\n',i,mse);
|
wolffd@0
|
96 end
|
wolffd@0
|
97 end |