wolffd@0
|
1 function [x,sNorm] = som_norm_variable(x, method, operation)
|
wolffd@0
|
2
|
wolffd@0
|
3 %SOM_NORM_VARIABLE Normalize or denormalize a scalar variable.
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % [x,sNorm] = som_norm_variable(x, method, operation)
|
wolffd@0
|
6 %
|
wolffd@0
|
7 % xnew = som_norm_variable(x,'var','do');
|
wolffd@0
|
8 % [dummy,sN] = som_norm_variable(x,'log','init');
|
wolffd@0
|
9 % [xnew,sN] = som_norm_variable(x,sN,'do');
|
wolffd@0
|
10 % xorig = som_norm_variable(xnew,sN,'undo');
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % Input and output arguments:
|
wolffd@0
|
13 % x (vector) a set of values of a scalar variable for
|
wolffd@0
|
14 % which the (de)normalization is performed.
|
wolffd@0
|
15 % The processed values are returned.
|
wolffd@0
|
16 % method (string) identifier for a normalization method: 'var',
|
wolffd@0
|
17 % 'range', 'log', 'logistic', 'histD', or 'histC'.
|
wolffd@0
|
18 % A normalization struct with default values is created.
|
wolffd@0
|
19 % (struct) normalization struct, or an array of such
|
wolffd@0
|
20 % (cellstr) first string gives normalization operation, and the
|
wolffd@0
|
21 % second gives denormalization operation, with x
|
wolffd@0
|
22 % representing the variable, for example:
|
wolffd@0
|
23 % {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}.
|
wolffd@0
|
24 % Note that in the last case, no denorm operation is
|
wolffd@0
|
25 % defined.
|
wolffd@0
|
26 % operation (string) the operation to be performed: 'init', 'do' or 'undo'
|
wolffd@0
|
27 %
|
wolffd@0
|
28 % sNorm (struct) updated normalization struct/struct array
|
wolffd@0
|
29 %
|
wolffd@0
|
30 % For more help, try 'type som_norm_variable' or check out online documentation.
|
wolffd@0
|
31 % See also SOM_NORMALIZE, SOM_DENORMALIZE.
|
wolffd@0
|
32
|
wolffd@0
|
33 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
34 %
|
wolffd@0
|
35 % som_norm_variable
|
wolffd@0
|
36 %
|
wolffd@0
|
37 % PURPOSE
|
wolffd@0
|
38 %
|
wolffd@0
|
39 % Initialize, apply and undo normalizations on a given vector of
|
wolffd@0
|
40 % scalar values.
|
wolffd@0
|
41 %
|
wolffd@0
|
42 % SYNTAX
|
wolffd@0
|
43 %
|
wolffd@0
|
44 % xnew = som_norm_variable(x,method,operation)
|
wolffd@0
|
45 % xnew = som_norm_variable(x,sNorm,operation)
|
wolffd@0
|
46 % [xnew,sNorm] = som_norm_variable(...)
|
wolffd@0
|
47 %
|
wolffd@0
|
48 % DESCRIPTION
|
wolffd@0
|
49 %
|
wolffd@0
|
50 % This function is used to initialize, apply and undo normalizations
|
wolffd@0
|
51 % on scalar variables. It is the low-level function that upper-level
|
wolffd@0
|
52 % functions SOM_NORMALIZE and SOM_DENORMALIZE utilize to actually (un)do
|
wolffd@0
|
53 % the normalizations.
|
wolffd@0
|
54 %
|
wolffd@0
|
55 % Normalizations are typically performed to control the variance of
|
wolffd@0
|
56 % vector components. If some vector components have variance which is
|
wolffd@0
|
57 % significantly higher than the variance of other components, those
|
wolffd@0
|
58 % components will dominate the map organization. Normalization of
|
wolffd@0
|
59 % the variance of vector components (method 'var') is used to prevent
|
wolffd@0
|
60 % that. In addition to variance normalization, other methods have
|
wolffd@0
|
61 % been implemented as well (see list below).
|
wolffd@0
|
62 %
|
wolffd@0
|
63 % Usually normalizations convert the variable values so that they no
|
wolffd@0
|
64 % longer make any sense: the values are still ordered, but their range
|
wolffd@0
|
65 % may have changed so radically that interpreting the numbers in the
|
wolffd@0
|
66 % original context is very hard. For this reason all implemented methods
|
wolffd@0
|
67 % are (more or less) revertible. The normalizations are monotonic
|
wolffd@0
|
68 % and information is saved so that they can be undone. Also, the saved
|
wolffd@0
|
69 % information makes it possible to apply the EXACTLY SAME normalization
|
wolffd@0
|
70 % to another set of values. The normalization information is determined
|
wolffd@0
|
71 % with 'init' operation, while 'do' and 'undo' operations are used to
|
wolffd@0
|
72 % apply or revert the normalization.
|
wolffd@0
|
73 %
|
wolffd@0
|
74 % The normalization information is saved in a normalization struct,
|
wolffd@0
|
75 % which is returned as the second argument of this function. Note that
|
wolffd@0
|
76 % normalization operations may be stacked. In this case, normalization
|
wolffd@0
|
77 % structs are positioned in a struct array. When applied, the array is
|
wolffd@0
|
78 % gone through from start to end, and when undone, in reverse order.
|
wolffd@0
|
79 %
|
wolffd@0
|
80 % method description
|
wolffd@0
|
81 %
|
wolffd@0
|
82 % 'var' Variance normalization. A linear transformation which
|
wolffd@0
|
83 % scales the values such that their variance=1. This is
|
wolffd@0
|
84 % convenient way to use Mahalanobis distance measure without
|
wolffd@0
|
85 % actually changing the distance calculation procedure.
|
wolffd@0
|
86 %
|
wolffd@0
|
87 % 'range' Normalization of range of values. A linear transformation
|
wolffd@0
|
88 % which scales the values between [0,1].
|
wolffd@0
|
89 %
|
wolffd@0
|
90 % 'log' Logarithmic normalization. In many cases the values of
|
wolffd@0
|
91 % a vector component are exponentially distributed. This
|
wolffd@0
|
92 % normalization is a good way to get more resolution to
|
wolffd@0
|
93 % (the low end of) that vector component. What this
|
wolffd@0
|
94 % actually does is a non-linear transformation:
|
wolffd@0
|
95 % x_new = log(x_old - m + 1)
|
wolffd@0
|
96 % where m=min(x_old) and log is the natural logarithm.
|
wolffd@0
|
97 % Applying the transformation to a value which is lower
|
wolffd@0
|
98 % than m-1 will give problems, as the result is then complex.
|
wolffd@0
|
99 % If the minimum for values is known a priori,
|
wolffd@0
|
100 % it might be a good idea to initialize the normalization with
|
wolffd@0
|
101 % [dummy,sN] = som_norm_variable(minimum,'log','init');
|
wolffd@0
|
102 % and normalize only after this:
|
wolffd@0
|
103 % x_new = som_norm_variable(x,sN,'do');
|
wolffd@0
|
104 %
|
wolffd@0
|
105 % 'logistic' or softmax normalization. This normalization ensures
|
wolffd@0
|
106 % that all values in the future, too, are within the range
|
wolffd@0
|
107 % [0,1]. The transformation is more-or-less linear in the
|
wolffd@0
|
108 % middle range (around mean value), and has a smooth
|
wolffd@0
|
109 % nonlinearity at both ends which ensures that all values
|
wolffd@0
|
110 % are within the range. The data is first scaled as in
|
wolffd@0
|
111 % variance normalization:
|
wolffd@0
|
112 % x_scaled = (x_old - mean(x_old))/std(x_old)
|
wolffd@0
|
113 % and then transformed with the logistic function
|
wolffd@0
|
114 % x_new = 1/(1+exp(-x_scaled))
|
wolffd@0
|
115 %
|
wolffd@0
|
116 % 'histD' Discrete histogram equalization. Non-linear. Orders the
|
wolffd@0
|
117 % values and replaces each value by its ordinal number.
|
wolffd@0
|
118 % Finally, scales the values such that they are between [0,1].
|
wolffd@0
|
119 % Useful for both discrete and continuous variables, but as
|
wolffd@0
|
120 % the saved normalization information consists of all
|
wolffd@0
|
121 % unique values of the initialization data set, it may use
|
wolffd@0
|
122 % considerable amounts of memory. If the variable can get
|
wolffd@0
|
123 % more than a few values (say, 20), it might be better to
|
wolffd@0
|
124 % use 'histC' method below. Another important note is that
|
wolffd@0
|
125 % this method is not exactly revertible if it is applied
|
wolffd@0
|
126 % to values which are not part of the original value set.
|
wolffd@0
|
127 %
|
wolffd@0
|
128 % 'histC' Continuous histogram equalization. Actually, a partially
|
wolffd@0
|
129 % linear transformation which tries to do something like
|
wolffd@0
|
130 % histogram equalization. The value range is divided to
|
wolffd@0
|
131 % a number of bins such that the number of values in each
|
wolffd@0
|
132 % bin is (almost) the same. The values are transformed
|
wolffd@0
|
133 % linearly in each bin. For example, values in bin number 3
|
wolffd@0
|
134 % are scaled between [3,4[. Finally, all values are scaled
|
wolffd@0
|
135 % between [0,1]. The number of bins is the square root
|
wolffd@0
|
136 % of the number of unique values in the initialization set,
|
wolffd@0
|
137 % rounded up. The resulting histogram equalization is not
|
wolffd@0
|
138 % as good as the one that 'histD' makes, but the benefit
|
wolffd@0
|
139 % is that it is exactly revertible - even outside the
|
wolffd@0
|
140 % original value range (although the results may be funny).
|
wolffd@0
|
141 %
|
wolffd@0
|
142 % 'eval' With this method, freeform normalization operations can be
|
wolffd@0
|
143 % specified. The parameter field contains strings to be
|
wolffd@0
|
144 % evaluated with 'eval' function, with variable name 'x'
|
wolffd@0
|
145 % representing the variable itself. The first string is
|
wolffd@0
|
146 % the normalization operation, and the second is a
|
wolffd@0
|
147 % denormalization operation. If the denormalization operation
|
wolffd@0
|
148 % is empty, it is ignored.
|
wolffd@0
|
149 %
|
wolffd@0
|
150 % INPUT ARGUMENTS
|
wolffd@0
|
151 %
|
wolffd@0
|
152 % x (vector) The scalar values to which the normalization
|
wolffd@0
|
153 % operation is applied.
|
wolffd@0
|
154 %
|
wolffd@0
|
155 % method The normalization specification.
|
wolffd@0
|
156 % (string) Identifier for a normalization method: 'var',
|
wolffd@0
|
157 % 'range', 'log', 'logistic', 'histD' or 'histC'.
|
wolffd@0
|
158 % Corresponding default normalization struct is created.
|
wolffd@0
|
159 % (struct) normalization struct
|
wolffd@0
|
160 % (struct array) of normalization structs, applied to
|
wolffd@0
|
161 % x one after the other
|
wolffd@0
|
162 % (cellstr) of length
|
wolffd@0
|
163 % (cellstr array) first string gives normalization operation, and
|
wolffd@0
|
164 % the second gives denormalization operation, with x
|
wolffd@0
|
165 % representing the variable, for example:
|
wolffd@0
|
166 % {'x+2','x-2}, or {'exp(-x)','-log(x)'} or {'round(x)'}.
|
wolffd@0
|
167 % Note that in the last case, no denorm operation is
|
wolffd@0
|
168 % defined.
|
wolffd@0
|
169 %
|
wolffd@0
|
170 % note: if the method is given as struct(s), it is
|
wolffd@0
|
171 % applied (done or undone, as specified by operation)
|
wolffd@0
|
172 % regardless of what the value of '.status' field
|
wolffd@0
|
173 % is in the struct(s). Only if the status is
|
wolffd@0
|
174 % 'uninit', the undoing operation is halted.
|
wolffd@0
|
175 % Anyhow, the '.status' fields in the returned
|
wolffd@0
|
176 % normalization struct(s) is set to approriate value.
|
wolffd@0
|
177 %
|
wolffd@0
|
178 % operation (string) The operation to perform: 'init' to initialize
|
wolffd@0
|
179 % the normalization struct, 'do' to perform the
|
wolffd@0
|
180 % normalization, 'undo' to undo the normalization,
|
wolffd@0
|
181 % if possible. If operation 'do' is given, but the
|
wolffd@0
|
182 % normalization struct has not yet been initialized,
|
wolffd@0
|
183 % it is initialized using the given data (x).
|
wolffd@0
|
184 %
|
wolffd@0
|
185 % OUTPUT ARGUMENTS
|
wolffd@0
|
186 %
|
wolffd@0
|
187 % x (vector) Appropriately processed values.
|
wolffd@0
|
188 %
|
wolffd@0
|
189 % sNorm (struct) Updated normalization struct/struct array. If any,
|
wolffd@0
|
190 % the '.status' and '.params' fields are updated.
|
wolffd@0
|
191 %
|
wolffd@0
|
192 % EXAMPLES
|
wolffd@0
|
193 %
|
wolffd@0
|
194 % To initialize and apply a normalization on a set of scalar values:
|
wolffd@0
|
195 %
|
wolffd@0
|
196 % [x_new,sN] = som_norm_variable(x_old,'var','do');
|
wolffd@0
|
197 %
|
wolffd@0
|
198 % To just initialize, use:
|
wolffd@0
|
199 %
|
wolffd@0
|
200 % [dummy,sN] = som_norm_variable(x_old,'var','init');
|
wolffd@0
|
201 %
|
wolffd@0
|
202 % To undo the normalization(s):
|
wolffd@0
|
203 %
|
wolffd@0
|
204 % x_orig = som_norm_variable(x_new,sN,'undo');
|
wolffd@0
|
205 %
|
wolffd@0
|
206 % Typically, normalizations of data structs/sets are handled using
|
wolffd@0
|
207 % functions SOM_NORMALIZE and SOM_DENORMALIZE. However, when only the
|
wolffd@0
|
208 % values of a single variable are of interest, SOM_NORM_VARIABLE may
|
wolffd@0
|
209 % be useful. For example, assume one wants to apply the normalization
|
wolffd@0
|
210 % done on a component (i) of a data struct (sD) to a new set of values
|
wolffd@0
|
211 % (x) of that component. With SOM_NORM_VARIABLE this can be done with:
|
wolffd@0
|
212 %
|
wolffd@0
|
213 % x_new = som_norm_variable(x,sD.comp_norm{i},'do');
|
wolffd@0
|
214 %
|
wolffd@0
|
215 % Now, as the normalizations in sD.comp_norm{i} have already been
|
wolffd@0
|
216 % initialized with the original data set (presumably sD.data),
|
wolffd@0
|
217 % the EXACTLY SAME normalization(s) can be applied to the new values.
|
wolffd@0
|
218 % The same thing can be done with SOM_NORMALIZE function, too:
|
wolffd@0
|
219 %
|
wolffd@0
|
220 % x_new = som_normalize(x,sD.comp_norm{i});
|
wolffd@0
|
221 %
|
wolffd@0
|
222 % Or, if the new data set were in variable D - a matrix of same
|
wolffd@0
|
223 % dimension as the original data set:
|
wolffd@0
|
224 %
|
wolffd@0
|
225 % D_new = som_normalize(D,sD,i);
|
wolffd@0
|
226 %
|
wolffd@0
|
227 % SEE ALSO
|
wolffd@0
|
228 %
|
wolffd@0
|
229 % som_normalize Add/apply/redo normalizations for a data struct/set.
|
wolffd@0
|
230 % som_denormalize Undo normalizations of a data struct/set.
|
wolffd@0
|
231
|
wolffd@0
|
232 % Copyright (c) 1998-2000 by the SOM toolbox programming team.
|
wolffd@0
|
233 % http://www.cis.hut.fi/projects/somtoolbox/
|
wolffd@0
|
234
|
wolffd@0
|
235 % Version 2.0beta juuso 151199 170400 150500
|
wolffd@0
|
236
|
wolffd@0
|
237 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
238 %% check arguments
|
wolffd@0
|
239
|
wolffd@0
|
240 error(nargchk(3, 3, nargin)); % check no. of input arguments is correct
|
wolffd@0
|
241
|
wolffd@0
|
242 % method
|
wolffd@0
|
243 sNorm = [];
|
wolffd@0
|
244 if ischar(method)
|
wolffd@0
|
245 if any(strcmp(method,{'var','range','log','logistic','histD','histC'})),
|
wolffd@0
|
246 sNorm = som_set('som_norm','method',method);
|
wolffd@0
|
247 else
|
wolffd@0
|
248 method = cellstr(method);
|
wolffd@0
|
249 end
|
wolffd@0
|
250 end
|
wolffd@0
|
251 if iscell(method),
|
wolffd@0
|
252 if length(method)==1 & isstruct(method{1}), sNorm = method{1};
|
wolffd@0
|
253 else
|
wolffd@0
|
254 if length(method)==1 | isempty(method{2}), method{2} = 'x'; end
|
wolffd@0
|
255 sNorm = som_set('som_norm','method','eval','params',method);
|
wolffd@0
|
256 end
|
wolffd@0
|
257 else
|
wolffd@0
|
258 sNorm = method;
|
wolffd@0
|
259 end
|
wolffd@0
|
260
|
wolffd@0
|
261 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
262 %% action
|
wolffd@0
|
263
|
wolffd@0
|
264 order = [1:length(sNorm)];
|
wolffd@0
|
265 if length(order)>1 & strcmp(operation,'undo'), order = order(end:-1:1); end
|
wolffd@0
|
266
|
wolffd@0
|
267 for i=order,
|
wolffd@0
|
268
|
wolffd@0
|
269 % initialize
|
wolffd@0
|
270 if strcmp(operation,'init') | ...
|
wolffd@0
|
271 (strcmp(operation,'do') & strcmp(sNorm(i).status,'uninit')),
|
wolffd@0
|
272
|
wolffd@0
|
273 % case method = 'hist'
|
wolffd@0
|
274 if strcmp(sNorm(i).method,'hist'),
|
wolffd@0
|
275 inds = find(~isnan(x) & ~isinf(x));
|
wolffd@0
|
276 if length(unique(x(inds)))>20, sNorm(i).method = 'histC';
|
wolffd@0
|
277 else sNorm{i}.method = 'histD'; end
|
wolffd@0
|
278 end
|
wolffd@0
|
279
|
wolffd@0
|
280 switch(sNorm(i).method),
|
wolffd@0
|
281 case 'var', params = norm_variance_init(x);
|
wolffd@0
|
282 case 'range', params = norm_scale01_init(x);
|
wolffd@0
|
283 case 'log', params = norm_log_init(x);
|
wolffd@0
|
284 case 'logistic', params = norm_logistic_init(x);
|
wolffd@0
|
285 case 'histD', params = norm_histeqD_init(x);
|
wolffd@0
|
286 case 'histC', params = norm_histeqC_init(x);
|
wolffd@0
|
287 case 'eval', params = sNorm(i).params;
|
wolffd@0
|
288 otherwise,
|
wolffd@0
|
289 error(['Unrecognized method: ' sNorm(i).method]);
|
wolffd@0
|
290 end
|
wolffd@0
|
291 sNorm(i).params = params;
|
wolffd@0
|
292 sNorm(i).status = 'undone';
|
wolffd@0
|
293 end
|
wolffd@0
|
294
|
wolffd@0
|
295 % do / undo
|
wolffd@0
|
296 if strcmp(operation,'do'),
|
wolffd@0
|
297 switch(sNorm(i).method),
|
wolffd@0
|
298 case 'var', x = norm_scale_do(x,sNorm(i).params);
|
wolffd@0
|
299 case 'range', x = norm_scale_do(x,sNorm(i).params);
|
wolffd@0
|
300 case 'log', x = norm_log_do(x,sNorm(i).params);
|
wolffd@0
|
301 case 'logistic', x = norm_logistic_do(x,sNorm(i).params);
|
wolffd@0
|
302 case 'histD', x = norm_histeqD_do(x,sNorm(i).params);
|
wolffd@0
|
303 case 'histC', x = norm_histeqC_do(x,sNorm(i).params);
|
wolffd@0
|
304 case 'eval', x = norm_eval_do(x,sNorm(i).params);
|
wolffd@0
|
305 otherwise,
|
wolffd@0
|
306 error(['Unrecognized method: ' sNorm(i).method]);
|
wolffd@0
|
307 end
|
wolffd@0
|
308 sNorm(i).status = 'done';
|
wolffd@0
|
309
|
wolffd@0
|
310 elseif strcmp(operation,'undo'),
|
wolffd@0
|
311
|
wolffd@0
|
312 if strcmp(sNorm(i).status,'uninit'),
|
wolffd@0
|
313 warning('Could not undo: uninitialized normalization struct.')
|
wolffd@0
|
314 break;
|
wolffd@0
|
315 end
|
wolffd@0
|
316 switch(sNorm(i).method),
|
wolffd@0
|
317 case 'var', x = norm_scale_undo(x,sNorm(i).params);
|
wolffd@0
|
318 case 'range', x = norm_scale_undo(x,sNorm(i).params);
|
wolffd@0
|
319 case 'log', x = norm_log_undo(x,sNorm(i).params);
|
wolffd@0
|
320 case 'logistic', x = norm_logistic_undo(x,sNorm(i).params);
|
wolffd@0
|
321 case 'histD', x = norm_histeqD_undo(x,sNorm(i).params);
|
wolffd@0
|
322 case 'histC', x = norm_histeqC_undo(x,sNorm(i).params);
|
wolffd@0
|
323 case 'eval', x = norm_eval_undo(x,sNorm(i).params);
|
wolffd@0
|
324 otherwise,
|
wolffd@0
|
325 error(['Unrecognized method: ' sNorm(i).method]);
|
wolffd@0
|
326 end
|
wolffd@0
|
327 sNorm(i).status = 'undone';
|
wolffd@0
|
328
|
wolffd@0
|
329 elseif ~strcmp(operation,'init'),
|
wolffd@0
|
330
|
wolffd@0
|
331 error(['Unrecognized operation: ' operation])
|
wolffd@0
|
332
|
wolffd@0
|
333 end
|
wolffd@0
|
334 end
|
wolffd@0
|
335
|
wolffd@0
|
336 return;
|
wolffd@0
|
337
|
wolffd@0
|
338 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
339 %% subfunctions
|
wolffd@0
|
340
|
wolffd@0
|
341 % linear scaling
|
wolffd@0
|
342
|
wolffd@0
|
343 function p = norm_variance_init(x)
|
wolffd@0
|
344 inds = find(~isnan(x) & isfinite(x));
|
wolffd@0
|
345 p = [mean(x(inds)), std(x(inds))];
|
wolffd@0
|
346 if p(2) == 0, p(2) = 1; end
|
wolffd@0
|
347 %end of norm_variance_init
|
wolffd@0
|
348
|
wolffd@0
|
349 function p = norm_scale01_init(x)
|
wolffd@0
|
350 inds = find(~isnan(x) & isfinite(x));
|
wolffd@0
|
351 mi = min(x(inds));
|
wolffd@0
|
352 ma = max(x(inds));
|
wolffd@0
|
353 if mi == ma, p = [mi, 1]; else p = [mi, ma-mi]; end
|
wolffd@0
|
354 %end of norm_scale01_init
|
wolffd@0
|
355
|
wolffd@0
|
356 function x = norm_scale_do(x,p)
|
wolffd@0
|
357 x = (x - p(1)) / p(2);
|
wolffd@0
|
358 % end of norm_scale_do
|
wolffd@0
|
359
|
wolffd@0
|
360 function x = norm_scale_undo(x,p)
|
wolffd@0
|
361 x = x * p(2) + p(1);
|
wolffd@0
|
362 % end of norm_scale_undo
|
wolffd@0
|
363
|
wolffd@0
|
364 % logarithm
|
wolffd@0
|
365
|
wolffd@0
|
366 function p = norm_log_init(x)
|
wolffd@0
|
367 inds = find(~isnan(x) & isfinite(x));
|
wolffd@0
|
368 p = min(x(inds));
|
wolffd@0
|
369 % end of norm_log_init
|
wolffd@0
|
370
|
wolffd@0
|
371 function x = norm_log_do(x,p)
|
wolffd@0
|
372 x = log(x - p +1);
|
wolffd@0
|
373 % if any(~isreal(x)), ok = 0; end
|
wolffd@0
|
374 % end of norm_log_do
|
wolffd@0
|
375
|
wolffd@0
|
376 function x = norm_log_undo(x,p)
|
wolffd@0
|
377 x = exp(x) -1 + p;
|
wolffd@0
|
378 % end of norm_log_undo
|
wolffd@0
|
379
|
wolffd@0
|
380 % logistic
|
wolffd@0
|
381
|
wolffd@0
|
382 function p = norm_logistic_init(x)
|
wolffd@0
|
383 inds = find(~isnan(x) & isfinite(x));
|
wolffd@0
|
384 p = [mean(x(inds)), std(x(inds))];
|
wolffd@0
|
385 if p(2)==0, p(2) = 1; end
|
wolffd@0
|
386 % end of norm_logistic_init
|
wolffd@0
|
387
|
wolffd@0
|
388 function x = norm_logistic_do(x,p)
|
wolffd@0
|
389 x = (x-p(1))/p(2);
|
wolffd@0
|
390 x = 1./(1+exp(-x));
|
wolffd@0
|
391 % end of norm_logistic_do
|
wolffd@0
|
392
|
wolffd@0
|
393 function x = norm_logistic_undo(x,p)
|
wolffd@0
|
394 x = log(x./(1-x));
|
wolffd@0
|
395 x = x*p(2)+p(1);
|
wolffd@0
|
396 % end of norm_logistic_undo
|
wolffd@0
|
397
|
wolffd@0
|
398 % histogram equalization for discrete values
|
wolffd@0
|
399
|
wolffd@0
|
400 function p = norm_histeqD_init(x)
|
wolffd@0
|
401 inds = find(~isnan(x) & ~isinf(x));
|
wolffd@0
|
402 p = unique(x(inds));
|
wolffd@0
|
403 % end of norm_histeqD_init
|
wolffd@0
|
404
|
wolffd@0
|
405 function x = norm_histeqD_do(x,p)
|
wolffd@0
|
406 bins = length(p);
|
wolffd@0
|
407 inds = find(~isnan(x) & ~isinf(x))';
|
wolffd@0
|
408 for i = inds,
|
wolffd@0
|
409 [dummy ind] = min(abs(x(i) - p));
|
wolffd@0
|
410 % data item closer to the left-hand bin wall is indexed after RH wall
|
wolffd@0
|
411 if x(i) > p(ind) & ind < bins,
|
wolffd@0
|
412 x(i) = ind + 1;
|
wolffd@0
|
413 else
|
wolffd@0
|
414 x(i) = ind;
|
wolffd@0
|
415 end
|
wolffd@0
|
416 end
|
wolffd@0
|
417 x = (x-1)/(bins-1); % normalization between [0,1]
|
wolffd@0
|
418 % end of norm_histeqD_do
|
wolffd@0
|
419
|
wolffd@0
|
420 function x = norm_histeqD_undo(x,p)
|
wolffd@0
|
421 bins = length(p);
|
wolffd@0
|
422 x = round(x*(bins-1)+1);
|
wolffd@0
|
423 inds = find(~isnan(x) & ~isinf(x));
|
wolffd@0
|
424 x(inds) = p(x(inds));
|
wolffd@0
|
425 % end of norm_histeqD_undo
|
wolffd@0
|
426
|
wolffd@0
|
427 % histogram equalization with partially linear functions
|
wolffd@0
|
428
|
wolffd@0
|
429 function p = norm_histeqC_init(x)
|
wolffd@0
|
430 % investigate x
|
wolffd@0
|
431 inds = find(~isnan(x) & ~isinf(x));
|
wolffd@0
|
432 samples = length(inds);
|
wolffd@0
|
433 xs = unique(x(inds));
|
wolffd@0
|
434 mi = xs(1);
|
wolffd@0
|
435 ma = xs(end);
|
wolffd@0
|
436 % decide number of limits
|
wolffd@0
|
437 lims = ceil(sqrt(length(xs))); % 2->2,100->10,1000->32,10000->100
|
wolffd@0
|
438 % decide limits
|
wolffd@0
|
439 if lims==1,
|
wolffd@0
|
440 p = [mi, mi+1];
|
wolffd@0
|
441 lims = 2;
|
wolffd@0
|
442 elseif lims==2,
|
wolffd@0
|
443 p = [mi, ma];
|
wolffd@0
|
444 else
|
wolffd@0
|
445 p = zeros(lims,1);
|
wolffd@0
|
446 p(1) = mi;
|
wolffd@0
|
447 p(end) = ma;
|
wolffd@0
|
448 binsize = zeros(lims-1,1); b = 1; avebinsize = samples/(lims-1);
|
wolffd@0
|
449 for i=1:(length(xs)-1),
|
wolffd@0
|
450 binsize(b) = binsize(b) + sum(x==xs(i));
|
wolffd@0
|
451 if binsize(b) >= avebinsize,
|
wolffd@0
|
452 b = b + 1;
|
wolffd@0
|
453 p(b) = (xs(i)+xs(i+1))/2;
|
wolffd@0
|
454 end
|
wolffd@0
|
455 if b==(lims-1),
|
wolffd@0
|
456 binsize(b) = samples-sum(binsize); break;
|
wolffd@0
|
457 else
|
wolffd@0
|
458 avebinsize = (samples-sum(binsize))/(lims-1-b);
|
wolffd@0
|
459 end
|
wolffd@0
|
460 end
|
wolffd@0
|
461 end
|
wolffd@0
|
462 % end of norm_histeqC_init
|
wolffd@0
|
463
|
wolffd@0
|
464 function x = norm_histeqC_do(x,p)
|
wolffd@0
|
465 xnew = x;
|
wolffd@0
|
466 lims = length(p);
|
wolffd@0
|
467 % handle values below minimum
|
wolffd@0
|
468 r = p(2)-p(1);
|
wolffd@0
|
469 inds = find(x<=p(1) & isfinite(x));
|
wolffd@0
|
470 if any(inds), xnew(inds) = 0-(p(1)-x(inds))/r; end
|
wolffd@0
|
471 % handle values above maximum
|
wolffd@0
|
472 r = p(end)-p(end-1);
|
wolffd@0
|
473 inds = find(x>p(end) & isfinite(x));
|
wolffd@0
|
474 if any(inds), xnew(inds) = lims-1+(x(inds)-p(end))/r; end
|
wolffd@0
|
475 % handle all other values
|
wolffd@0
|
476 for i=1:(lims-1),
|
wolffd@0
|
477 r0 = p(i); r1 = p(i+1); r = r1-r0;
|
wolffd@0
|
478 inds = find(x>r0 & x<=r1);
|
wolffd@0
|
479 if any(inds), xnew(inds) = i-1+(x(inds)-r0)/r; end
|
wolffd@0
|
480 end
|
wolffd@0
|
481 % scale so that minimum and maximum correspond to 0 and 1
|
wolffd@0
|
482 x = xnew/(lims-1);
|
wolffd@0
|
483 % end of norm_histeqC_do
|
wolffd@0
|
484
|
wolffd@0
|
485 function x = norm_histeqC_undo(x,p)
|
wolffd@0
|
486 xnew = x;
|
wolffd@0
|
487 lims = length(p);
|
wolffd@0
|
488 % scale so that 0 and 1 correspond to minimum and maximum
|
wolffd@0
|
489 x = x*(lims-1);
|
wolffd@0
|
490
|
wolffd@0
|
491 % handle values below minimum
|
wolffd@0
|
492 r = p(2)-p(1);
|
wolffd@0
|
493 inds = find(x<=0 & isfinite(x));
|
wolffd@0
|
494 if any(inds), xnew(inds) = x(inds)*r + p(1); end
|
wolffd@0
|
495 % handle values above maximum
|
wolffd@0
|
496 r = p(end)-p(end-1);
|
wolffd@0
|
497 inds = find(x>lims-1 & isfinite(x));
|
wolffd@0
|
498 if any(inds), xnew(inds) = (x(inds)-(lims-1))*r+p(end); end
|
wolffd@0
|
499 % handle all other values
|
wolffd@0
|
500 for i=1:(lims-1),
|
wolffd@0
|
501 r0 = p(i); r1 = p(i+1); r = r1-r0;
|
wolffd@0
|
502 inds = find(x>i-1 & x<=i);
|
wolffd@0
|
503 if any(inds), xnew(inds) = (x(inds)-(i-1))*r + r0; end
|
wolffd@0
|
504 end
|
wolffd@0
|
505 x = xnew;
|
wolffd@0
|
506 % end of norm_histeqC_undo
|
wolffd@0
|
507
|
wolffd@0
|
508 % eval
|
wolffd@0
|
509
|
wolffd@0
|
510 function p = norm_eval_init(method)
|
wolffd@0
|
511 p = method;
|
wolffd@0
|
512 %end of norm_eval_init
|
wolffd@0
|
513
|
wolffd@0
|
514 function x = norm_eval_do(x,p)
|
wolffd@0
|
515 x_tmp = eval(p{1});
|
wolffd@0
|
516 if size(x_tmp,1)>=1 & size(x,1)>=1 & ...
|
wolffd@0
|
517 size(x_tmp,2)==1 & size(x,2)==1,
|
wolffd@0
|
518 x = x_tmp;
|
wolffd@0
|
519 end
|
wolffd@0
|
520 %end of norm_eval_do
|
wolffd@0
|
521
|
wolffd@0
|
522 function x = norm_eval_undo(x,p)
|
wolffd@0
|
523 x_tmp = eval(p{2});
|
wolffd@0
|
524 if size(x_tmp,1)>=1 & size(x,1)>=1 & ...
|
wolffd@0
|
525 size(x_tmp,2)==1 & size(x,2)==1,
|
wolffd@0
|
526 x = x_tmp;
|
wolffd@0
|
527 end
|
wolffd@0
|
528 %end of norm_eval_undo
|
wolffd@0
|
529
|
wolffd@0
|
530 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
531
|
wolffd@0
|
532
|
wolffd@0
|
533
|