annotate toolboxes/MIRtoolbox1.3.2/somtoolbox/som_batchtrain.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [sMap,sTrain] = som_batchtrain(sMap, D, varargin)
wolffd@0 2
wolffd@0 3 %SOM_BATCHTRAIN Use batch algorithm to train the Self-Organizing Map.
wolffd@0 4 %
wolffd@0 5 % [sM,sT] = som_batchtrain(sM, D, [argID, value, ...])
wolffd@0 6 %
wolffd@0 7 % sM = som_batchtrain(sM,D);
wolffd@0 8 % sM = som_batchtrain(sM,sD,'radius',[10 3 2 1 0.1],'tracking',3);
wolffd@0 9 % [M,sT] = som_batchtrain(M,D,'ep','msize',[10 3],'hexa');
wolffd@0 10 %
wolffd@0 11 % Input and output arguments ([]'s are optional):
wolffd@0 12 % sM (struct) map struct, the trained and updated map is returned
wolffd@0 13 % (matrix) codebook matrix of a self-organizing map
wolffd@0 14 % size munits x dim or msize(1) x ... x msize(k) x dim
wolffd@0 15 % The trained map codebook is returned.
wolffd@0 16 % D (struct) training data; data struct
wolffd@0 17 % (matrix) training data, size dlen x dim
wolffd@0 18 % [argID, (string) See below. The values which are unambiguous can
wolffd@0 19 % value] (varies) be given without the preceeding argID.
wolffd@0 20 %
wolffd@0 21 % sT (struct) learning parameters used during the training
wolffd@0 22 %
wolffd@0 23 % Here are the valid argument IDs and corresponding values. The values which
wolffd@0 24 % are unambiguous (marked with '*') can be given without the preceeding argID.
wolffd@0 25 % 'mask' (vector) BMU search mask, size dim x 1
wolffd@0 26 % 'msize' (vector) map size
wolffd@0 27 % 'radius' (vector) neighborhood radiuses, length 1, 2 or trainlen
wolffd@0 28 % 'radius_ini' (scalar) initial training radius
wolffd@0 29 % 'radius_fin' (scalar) final training radius
wolffd@0 30 % 'tracking' (scalar) tracking level, 0-3
wolffd@0 31 % 'trainlen' (scalar) training length in epochs
wolffd@0 32 % 'train' *(struct) train struct, parameters for training
wolffd@0 33 % 'sTrain','som_train' = 'train'
wolffd@0 34 % 'neigh' *(string) neighborhood function, 'gaussian', 'cutgauss',
wolffd@0 35 % 'ep' or 'bubble'
wolffd@0 36 % 'topol' *(struct) topology struct
wolffd@0 37 % 'som_topol','sTopol' = 'topol'
wolffd@0 38 % 'lattice' *(string) map lattice, 'hexa' or 'rect'
wolffd@0 39 % 'shape' *(string) map shape, 'sheet', 'cyl' or 'toroid'
wolffd@0 40 % 'weights' (vector) sample weights: each sample is weighted
wolffd@0 41 %
wolffd@0 42 % For more help, try 'type som_batchtrain' or check out online documentation.
wolffd@0 43 % See also SOM_MAKE, SOM_SEQTRAIN, SOM_TRAIN_STRUCT.
wolffd@0 44
wolffd@0 45 %%%%%%%%%%%%% DETAILED DESCRIPTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 46 %
wolffd@0 47 % som_batchtrain
wolffd@0 48 %
wolffd@0 49 % PURPOSE
wolffd@0 50 %
wolffd@0 51 % Trains a Self-Organizing Map using the batch algorithm.
wolffd@0 52 %
wolffd@0 53 % SYNTAX
wolffd@0 54 %
wolffd@0 55 % sM = som_batchtrain(sM,D);
wolffd@0 56 % sM = som_batchtrain(sM,sD);
wolffd@0 57 % sM = som_batchtrain(...,'argID',value,...);
wolffd@0 58 % sM = som_batchtrain(...,value,...);
wolffd@0 59 % [sM,sT] = som_batchtrain(M,D,...);
wolffd@0 60 %
wolffd@0 61 % DESCRIPTION
wolffd@0 62 %
wolffd@0 63 % Trains the given SOM (sM or M above) with the given training data
wolffd@0 64 % (sD or D) using batch training algorithm. If no optional arguments
wolffd@0 65 % (argID, value) are given, a default training is done. Using optional
wolffd@0 66 % arguments the training parameters can be specified. Returns the
wolffd@0 67 % trained and updated SOM and a train struct which contains
wolffd@0 68 % information on the training.
wolffd@0 69 %
wolffd@0 70 % REFERENCES
wolffd@0 71 %
wolffd@0 72 % Kohonen, T., "Self-Organizing Map", 2nd ed., Springer-Verlag,
wolffd@0 73 % Berlin, 1995, pp. 127-128.
wolffd@0 74 % Kohonen, T., "Things you haven't heard about the Self-Organizing
wolffd@0 75 % Map", In proceedings of International Conference
wolffd@0 76 % on Neural Networks (ICNN), San Francisco, 1993, pp. 1147-1156.
wolffd@0 77 %
wolffd@0 78 % KNOWN BUGS
wolffd@0 79 %
wolffd@0 80 % Batchtrain does not work correctly for a map with a single unit.
wolffd@0 81 % This is because of the way 'min'-function works.
wolffd@0 82 %
wolffd@0 83 % REQUIRED INPUT ARGUMENTS
wolffd@0 84 %
wolffd@0 85 % sM The map to be trained.
wolffd@0 86 % (struct) map struct
wolffd@0 87 % (matrix) codebook matrix (field .data of map struct)
wolffd@0 88 % Size is either [munits dim], in which case the map grid
wolffd@0 89 % dimensions (msize) should be specified with optional arguments,
wolffd@0 90 % or [msize(1) ... msize(k) dim] in which case the map
wolffd@0 91 % grid dimensions are taken from the size of the matrix.
wolffd@0 92 % Lattice, by default, is 'rect' and shape 'sheet'.
wolffd@0 93 % D Training data.
wolffd@0 94 % (struct) data struct
wolffd@0 95 % (matrix) data matrix, size [dlen dim]
wolffd@0 96 %
wolffd@0 97 % OPTIONAL INPUT ARGUMENTS
wolffd@0 98 %
wolffd@0 99 % argID (string) Argument identifier string (see below).
wolffd@0 100 % value (varies) Value for the argument (see below).
wolffd@0 101 %
wolffd@0 102 % The optional arguments can be given as 'argID',value -pairs. If an
wolffd@0 103 % argument is given value multiple times, the last one is
wolffd@0 104 % used. The valid IDs and corresponding values are listed below. The values
wolffd@0 105 % which are unambiguous (marked with '*') can be given without the
wolffd@0 106 % preceeding argID.
wolffd@0 107 %
wolffd@0 108 % Below is the list of valid arguments:
wolffd@0 109 % 'mask' (vector) BMU search mask, size dim x 1. Default is
wolffd@0 110 % the one in sM (field '.mask') or a vector of
wolffd@0 111 % ones if only a codebook matrix was given.
wolffd@0 112 % 'msize' (vector) map grid dimensions. Default is the one
wolffd@0 113 % in sM (field sM.topol.msize) or
wolffd@0 114 % 'si = size(sM); msize = si(1:end-1);'
wolffd@0 115 % if only a codebook matrix was given.
wolffd@0 116 % 'radius' (vector) neighborhood radius
wolffd@0 117 % length = 1: radius_ini = radius
wolffd@0 118 % length = 2: [radius_ini radius_fin] = radius
wolffd@0 119 % length > 2: the vector given neighborhood
wolffd@0 120 % radius for each step separately
wolffd@0 121 % trainlen = length(radius)
wolffd@0 122 % 'radius_ini' (scalar) initial training radius
wolffd@0 123 % 'radius_fin' (scalar) final training radius
wolffd@0 124 % 'tracking' (scalar) tracking level: 0, 1 (default), 2 or 3
wolffd@0 125 % 0 - estimate time
wolffd@0 126 % 1 - track time and quantization error
wolffd@0 127 % 2 - plot quantization error
wolffd@0 128 % 3 - plot quantization error and two first
wolffd@0 129 % components
wolffd@0 130 % 'trainlen' (scalar) training length in epochs
wolffd@0 131 % 'train' *(struct) train struct, parameters for training.
wolffd@0 132 % Default parameters, unless specified,
wolffd@0 133 % are acquired using SOM_TRAIN_STRUCT (this
wolffd@0 134 % also applies for 'trainlen', 'radius_ini'
wolffd@0 135 % and 'radius_fin').
wolffd@0 136 % 'sTrain', 'som_topol' (struct) = 'train'
wolffd@0 137 % 'neigh' *(string) The used neighborhood function. Default is
wolffd@0 138 % the one in sM (field '.neigh') or 'gaussian'
wolffd@0 139 % if only a codebook matrix was given. Other
wolffd@0 140 % possible values is 'cutgauss', 'ep' and 'bubble'.
wolffd@0 141 % 'topol' *(struct) topology of the map. Default is the one
wolffd@0 142 % in sM (field '.topol').
wolffd@0 143 % 'sTopol', 'som_topol' (struct) = 'topol'
wolffd@0 144 % 'lattice' *(string) map lattice. Default is the one in sM
wolffd@0 145 % (field sM.topol.lattice) or 'rect'
wolffd@0 146 % if only a codebook matrix was given.
wolffd@0 147 % 'shape' *(string) map shape. Default is the one in sM
wolffd@0 148 % (field sM.topol.shape) or 'sheet'
wolffd@0 149 % if only a codebook matrix was given.
wolffd@0 150 % 'weights' (vector) weight for each data vector: during training,
wolffd@0 151 % each data sample is weighted with the corresponding
wolffd@0 152 % value, for example giving weights = [1 1 2 1]
wolffd@0 153 % would have the same result as having third sample
wolffd@0 154 % appear 2 times in the data
wolffd@0 155 %
wolffd@0 156 % OUTPUT ARGUMENTS
wolffd@0 157 %
wolffd@0 158 % sM the trained map
wolffd@0 159 % (struct) if a map struct was given as input argument, a
wolffd@0 160 % map struct is also returned. The current training
wolffd@0 161 % is added to the training history (sM.trainhist).
wolffd@0 162 % The 'neigh' and 'mask' fields of the map struct
wolffd@0 163 % are updated to match those of the training.
wolffd@0 164 % (matrix) if a matrix was given as input argument, a matrix
wolffd@0 165 % is also returned with the same size as the input
wolffd@0 166 % argument.
wolffd@0 167 % sT (struct) train struct; information of the accomplished training
wolffd@0 168 %
wolffd@0 169 % EXAMPLES
wolffd@0 170 %
wolffd@0 171 % Simplest case:
wolffd@0 172 % sM = som_batchtrain(sM,D);
wolffd@0 173 % sM = som_batchtrain(sM,sD);
wolffd@0 174 %
wolffd@0 175 % To change the tracking level, 'tracking' argument is specified:
wolffd@0 176 % sM = som_batchtrain(sM,D,'tracking',3);
wolffd@0 177 %
wolffd@0 178 % The change training parameters, the optional arguments 'train','neigh',
wolffd@0 179 % 'mask','trainlen','radius','radius_ini' and 'radius_fin' are used.
wolffd@0 180 % sM = som_batchtrain(sM,D,'neigh','cutgauss','trainlen',10,'radius_fin',0);
wolffd@0 181 %
wolffd@0 182 % Another way to specify training parameters is to create a train struct:
wolffd@0 183 % sTrain = som_train_struct(sM,'dlen',size(D,1));
wolffd@0 184 % sTrain = som_set(sTrain,'neigh','cutgauss');
wolffd@0 185 % sM = som_batchtrain(sM,D,sTrain);
wolffd@0 186 %
wolffd@0 187 % By default the neighborhood radius goes linearly from radius_ini to
wolffd@0 188 % radius_fin. If you want to change this, you can use the 'radius' argument
wolffd@0 189 % to specify the neighborhood radius for each step separately:
wolffd@0 190 % sM = som_batchtrain(sM,D,'radius',[5 3 1 1 1 1 0.5 0.5 0.5]);
wolffd@0 191 %
wolffd@0 192 % You don't necessarily have to use the map struct, but you can operate
wolffd@0 193 % directly with codebook matrices. However, in this case you have to
wolffd@0 194 % specify the topology of the map in the optional arguments. The
wolffd@0 195 % following commads are identical (M is originally a 200 x dim sized matrix):
wolffd@0 196 % M = som_batchtrain(M,D,'msize',[20 10],'lattice','hexa','shape','cyl');
wolffd@0 197 % or
wolffd@0 198 % M = som_batchtrain(M,D,'msize',[20 10],'hexa','cyl');
wolffd@0 199 % or
wolffd@0 200 % sT= som_set('som_topol','msize',[20 10],'lattice','hexa','shape','cyl');
wolffd@0 201 % M = som_batchtrain(M,D,sT);
wolffd@0 202 % or
wolffd@0 203 % M = reshape(M,[20 10 dim]);
wolffd@0 204 % M = som_batchtrain(M,D,'hexa','cyl');
wolffd@0 205 %
wolffd@0 206 % The som_batchtrain also returns a train struct with information on the
wolffd@0 207 % accomplished training. This struct is also added to the end of the
wolffd@0 208 % trainhist field of map struct, in case a map struct was given.
wolffd@0 209 % [M,sTrain] = som_batchtrain(M,D,'msize',[20 10]);
wolffd@0 210 % [sM,sTrain] = som_batchtrain(sM,D); % sM.trainhist{end}==sTrain
wolffd@0 211 %
wolffd@0 212 % SEE ALSO
wolffd@0 213 %
wolffd@0 214 % som_make Initialize and train a SOM using default parameters.
wolffd@0 215 % som_seqtrain Train SOM with sequential algorithm.
wolffd@0 216 % som_train_struct Determine default training parameters.
wolffd@0 217
wolffd@0 218 % Copyright (c) 1997-2000 by the SOM toolbox programming team.
wolffd@0 219 % http://www.cis.hut.fi/projects/somtoolbox/
wolffd@0 220
wolffd@0 221 % Version 1.0beta juuso 071197 041297
wolffd@0 222 % Version 2.0beta juuso 101199
wolffd@0 223
wolffd@0 224 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 225 %% Check arguments
wolffd@0 226
wolffd@0 227 error(nargchk(2, Inf, nargin)); % check the number of input arguments
wolffd@0 228
wolffd@0 229 % map
wolffd@0 230 struct_mode = isstruct(sMap);
wolffd@0 231 if struct_mode,
wolffd@0 232 sTopol = sMap.topol;
wolffd@0 233 else
wolffd@0 234 orig_size = size(sMap);
wolffd@0 235 if ndims(sMap) > 2,
wolffd@0 236 si = size(sMap); dim = si(end); msize = si(1:end-1);
wolffd@0 237 M = reshape(sMap,[prod(msize) dim]);
wolffd@0 238 else
wolffd@0 239 msize = [orig_size(1) 1];
wolffd@0 240 dim = orig_size(2);
wolffd@0 241 end
wolffd@0 242 sMap = som_map_struct(dim,'msize',msize);
wolffd@0 243 sTopol = sMap.topol;
wolffd@0 244 end
wolffd@0 245 [munits dim] = size(sMap.codebook);
wolffd@0 246
wolffd@0 247 % data
wolffd@0 248 if isstruct(D),
wolffd@0 249 data_name = D.name;
wolffd@0 250 D = D.data;
wolffd@0 251 else
wolffd@0 252 data_name = inputname(2);
wolffd@0 253 end
wolffd@0 254 nonempty = find(sum(isnan(D),2) < dim);
wolffd@0 255 D = D(nonempty,:); % remove empty vectors from the data
wolffd@0 256 [dlen ddim] = size(D); % check input dimension
wolffd@0 257 if dim ~= ddim,
wolffd@0 258 error('Map and data input space dimensions disagree.');
wolffd@0 259 end
wolffd@0 260
wolffd@0 261 % varargin
wolffd@0 262 sTrain = som_set('som_train','algorithm','batch','neigh', ...
wolffd@0 263 sMap.neigh,'mask',sMap.mask,'data_name',data_name);
wolffd@0 264 radius = [];
wolffd@0 265 tracking = 1;
wolffd@0 266 weights = 1;
wolffd@0 267
wolffd@0 268 i=1;
wolffd@0 269 while i<=length(varargin),
wolffd@0 270 argok = 1;
wolffd@0 271 if ischar(varargin{i}),
wolffd@0 272 switch varargin{i},
wolffd@0 273 % argument IDs
wolffd@0 274 case 'msize', i=i+1; sTopol.msize = varargin{i};
wolffd@0 275 case 'lattice', i=i+1; sTopol.lattice = varargin{i};
wolffd@0 276 case 'shape', i=i+1; sTopol.shape = varargin{i};
wolffd@0 277 case 'mask', i=i+1; sTrain.mask = varargin{i};
wolffd@0 278 case 'neigh', i=i+1; sTrain.neigh = varargin{i};
wolffd@0 279 case 'trainlen', i=i+1; sTrain.trainlen = varargin{i};
wolffd@0 280 case 'tracking', i=i+1; tracking = varargin{i};
wolffd@0 281 case 'weights', i=i+1; weights = varargin{i};
wolffd@0 282 case 'radius_ini', i=i+1; sTrain.radius_ini = varargin{i};
wolffd@0 283 case 'radius_fin', i=i+1; sTrain.radius_fin = varargin{i};
wolffd@0 284 case 'radius',
wolffd@0 285 i=i+1;
wolffd@0 286 l = length(varargin{i});
wolffd@0 287 if l==1,
wolffd@0 288 sTrain.radius_ini = varargin{i};
wolffd@0 289 else
wolffd@0 290 sTrain.radius_ini = varargin{i}(1);
wolffd@0 291 sTrain.radius_fin = varargin{i}(end);
wolffd@0 292 if l>2, radius = varargin{i}; end
wolffd@0 293 end
wolffd@0 294 case {'sTrain','train','som_train'}, i=i+1; sTrain = varargin{i};
wolffd@0 295 case {'topol','sTopol','som_topol'},
wolffd@0 296 i=i+1;
wolffd@0 297 sTopol = varargin{i};
wolffd@0 298 if prod(sTopol.msize) ~= munits,
wolffd@0 299 error('Given map grid size does not match the codebook size.');
wolffd@0 300 end
wolffd@0 301 % unambiguous values
wolffd@0 302 case {'hexa','rect'}, sTopol.lattice = varargin{i};
wolffd@0 303 case {'sheet','cyl','toroid'}, sTopol.shape = varargin{i};
wolffd@0 304 case {'gaussian','cutgauss','ep','bubble'}, sTrain.neigh = varargin{i};
wolffd@0 305 otherwise argok=0;
wolffd@0 306 end
wolffd@0 307 elseif isstruct(varargin{i}) & isfield(varargin{i},'type'),
wolffd@0 308 switch varargin{i}(1).type,
wolffd@0 309 case 'som_topol',
wolffd@0 310 sTopol = varargin{i};
wolffd@0 311 if prod(sTopol.msize) ~= munits,
wolffd@0 312 error('Given map grid size does not match the codebook size.');
wolffd@0 313 end
wolffd@0 314 case 'som_train', sTrain = varargin{i};
wolffd@0 315 otherwise argok=0;
wolffd@0 316 end
wolffd@0 317 else
wolffd@0 318 argok = 0;
wolffd@0 319 end
wolffd@0 320 if ~argok,
wolffd@0 321 disp(['(som_batchtrain) Ignoring invalid argument #' num2str(i+2)]);
wolffd@0 322 end
wolffd@0 323 i = i+1;
wolffd@0 324 end
wolffd@0 325
wolffd@0 326 % take only weights of non-empty vectors
wolffd@0 327 if length(weights)>dlen, weights = weights(nonempty); end
wolffd@0 328
wolffd@0 329 % trainlen
wolffd@0 330 if ~isempty(radius), sTrain.trainlen = length(radius); end
wolffd@0 331
wolffd@0 332 % check topology
wolffd@0 333 if struct_mode,
wolffd@0 334 if ~strcmp(sTopol.lattice,sMap.topol.lattice) | ...
wolffd@0 335 ~strcmp(sTopol.shape,sMap.topol.shape) | ...
wolffd@0 336 any(sTopol.msize ~= sMap.topol.msize),
wolffd@0 337 warning('Changing the original map topology.');
wolffd@0 338 end
wolffd@0 339 end
wolffd@0 340 sMap.topol = sTopol;
wolffd@0 341
wolffd@0 342 % complement the training struct
wolffd@0 343 sTrain = som_train_struct(sTrain,sMap,'dlen',dlen);
wolffd@0 344 if isempty(sTrain.mask), sTrain.mask = ones(dim,1); end
wolffd@0 345
wolffd@0 346 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 347 %% initialize
wolffd@0 348
wolffd@0 349 M = sMap.codebook;
wolffd@0 350 mask = sTrain.mask;
wolffd@0 351 trainlen = sTrain.trainlen;
wolffd@0 352
wolffd@0 353 % neighborhood radius
wolffd@0 354 if trainlen==1,
wolffd@0 355 radius = sTrain.radius_ini;
wolffd@0 356 elseif length(radius)<=2,
wolffd@0 357 r0 = sTrain.radius_ini; r1 = sTrain.radius_fin;
wolffd@0 358 radius = r1 + fliplr((0:(trainlen-1))/(trainlen-1)) * (r0 - r1);
wolffd@0 359 else
wolffd@0 360 % nil
wolffd@0 361 end
wolffd@0 362
wolffd@0 363 % distance between map units in the output space
wolffd@0 364 % Since in the case of gaussian and ep neighborhood functions, the
wolffd@0 365 % equations utilize squares of the unit distances and in bubble case
wolffd@0 366 % it doesn't matter which is used, the unitdistances and neighborhood
wolffd@0 367 % radiuses are squared.
wolffd@0 368 Ud = som_unit_dists(sTopol);
wolffd@0 369 Ud = Ud.^2;
wolffd@0 370 radius = radius.^2;
wolffd@0 371 % zero neighborhood radius may cause div-by-zero error
wolffd@0 372 radius(find(radius==0)) = eps;
wolffd@0 373
wolffd@0 374 % The training algorithm involves calculating weighted Euclidian distances
wolffd@0 375 % to all map units for each data vector. Basically this is done as
wolffd@0 376 % for i=1:dlen,
wolffd@0 377 % for j=1:munits,
wolffd@0 378 % for k=1:dim
wolffd@0 379 % Dist(j,i) = Dist(j,i) + mask(k) * (D(i,k) - M(j,k))^2;
wolffd@0 380 % end
wolffd@0 381 % end
wolffd@0 382 % end
wolffd@0 383 % where mask is the weighting vector for distance calculation. However, taking
wolffd@0 384 % into account that distance between vectors m and v can be expressed as
wolffd@0 385 % |m - v|^2 = sum_i ((m_i - v_i)^2) = sum_i (m_i^2 + v_i^2 - 2*m_i*v_i)
wolffd@0 386 % this can be made much faster by transforming it to a matrix operation:
wolffd@0 387 % Dist = (M.^2)*mask*ones(1,d) + ones(m,1)*mask'*(D'.^2) - 2*M*diag(mask)*D'
wolffd@0 388 % Of the involved matrices, several are constant, as the mask and data do
wolffd@0 389 % not change during training. Therefore they are calculated beforehand.
wolffd@0 390
wolffd@0 391 % For the case where there are unknown components in the data, each data
wolffd@0 392 % vector will have an individual mask vector so that for that unit, the
wolffd@0 393 % unknown components are not taken into account in distance calculation.
wolffd@0 394 % In addition all NaN's are changed to zeros so that they don't screw up
wolffd@0 395 % the matrix multiplications and behave correctly in updating step.
wolffd@0 396 Known = ~isnan(D);
wolffd@0 397 W1 = (mask*ones(1,dlen)) .* Known';
wolffd@0 398 D(find(~Known)) = 0;
wolffd@0 399
wolffd@0 400 % constant matrices
wolffd@0 401 WD = 2*diag(mask)*D'; % constant matrix
wolffd@0 402 dconst = ((D.^2)*mask)'; % constant in distance calculation for each data sample
wolffd@0 403 % W2 = ones(munits,1)*mask'; D2 = (D'.^2);
wolffd@0 404
wolffd@0 405 % initialize tracking
wolffd@0 406 start = clock;
wolffd@0 407 qe = zeros(trainlen,1);
wolffd@0 408
wolffd@0 409 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 410 %% Action
wolffd@0 411
wolffd@0 412 % With the 'blen' parameter you can control the memory consumption
wolffd@0 413 % of the algorithm, which is in practive directly proportional
wolffd@0 414 % to munits*blen. If you're having problems with memory, try to
wolffd@0 415 % set the value of blen lower.
wolffd@0 416 blen = min(munits,dlen);
wolffd@0 417
wolffd@0 418 % reserve some space
wolffd@0 419 bmus = zeros(1,dlen);
wolffd@0 420 ddists = zeros(1,dlen);
wolffd@0 421
wolffd@0 422 for t = 1:trainlen,
wolffd@0 423
wolffd@0 424 % batchy train - this is done a block of data (inds) at a time
wolffd@0 425 % rather than in a single sweep to save memory consumption.
wolffd@0 426 % The 'Dist' and 'Hw' matrices have size munits*blen
wolffd@0 427 % which - if you have a lot of data - would be HUGE if you
wolffd@0 428 % calculated it all at once. A single-sweep version would
wolffd@0 429 % look like this:
wolffd@0 430 % Dist = (M.^2)*W1 - M*WD; %+ W2*D2
wolffd@0 431 % [ddists, bmus] = min(Dist);
wolffd@0 432 % (notice that the W2*D2 term can be ignored since it is constant)
wolffd@0 433 % This "batchy" version is the same as single-sweep if blen=dlen.
wolffd@0 434 i0 = 0;
wolffd@0 435 while i0+1<=dlen,
wolffd@0 436 inds = [(i0+1):min(dlen,i0+blen)]; i0 = i0+blen;
wolffd@0 437 Dist = (M.^2)*W1(:,inds) - M*WD(:,inds);
wolffd@0 438 [ddists(inds), bmus(inds)] = min(Dist);
wolffd@0 439 end
wolffd@0 440
wolffd@0 441 % tracking
wolffd@0 442 if tracking > 0,
wolffd@0 443 ddists = ddists+dconst; % add the constant term
wolffd@0 444 ddists(ddists<0) = 0; % rounding errors...
wolffd@0 445 qe(t) = mean(sqrt(ddists));
wolffd@0 446 trackplot(M,D,tracking,start,t,qe);
wolffd@0 447 end
wolffd@0 448
wolffd@0 449 % neighborhood
wolffd@0 450 % notice that the elements Ud and radius have been squared!
wolffd@0 451 % note: 'bubble' matches the original "Batch Map" algorithm
wolffd@0 452 switch sTrain.neigh,
wolffd@0 453 case 'bubble', H = (Ud<=radius(t));
wolffd@0 454 case 'gaussian', H = exp(-Ud/(2*radius(t)));
wolffd@0 455 case 'cutgauss', H = exp(-Ud/(2*radius(t))) .* (Ud<=radius(t));
wolffd@0 456 case 'ep', H = (1-Ud/radius(t)) .* (Ud<=radius(t));
wolffd@0 457 end
wolffd@0 458
wolffd@0 459 % update
wolffd@0 460
wolffd@0 461 % In principle the updating step goes like this: replace each map unit
wolffd@0 462 % by the average of the data vectors that were in its neighborhood.
wolffd@0 463 % The contribution, or activation, of data vectors in the mean can
wolffd@0 464 % be varied with the neighborhood function. This activation is given
wolffd@0 465 % by matrix H. So, for each map unit the new weight vector is
wolffd@0 466 %
wolffd@0 467 % m = sum_i (h_i * d_i) / sum_i (h_i),
wolffd@0 468 %
wolffd@0 469 % where i denotes the index of data vector. Since the values of
wolffd@0 470 % neighborhood function h_i are the same for all data vectors belonging to
wolffd@0 471 % the Voronoi set of the same map unit, the calculation is actually done
wolffd@0 472 % by first calculating a partition matrix P with elements p_ij=1 if the
wolffd@0 473 % BMU of data vector j is i.
wolffd@0 474
wolffd@0 475 P = sparse(bmus,[1:dlen],weights,munits,dlen);
wolffd@0 476
wolffd@0 477 % Then the sum of vectors in each Voronoi set are calculated (P*D) and the
wolffd@0 478 % neighborhood is taken into account by calculating a weighted sum of the
wolffd@0 479 % Voronoi sum (H*). The "activation" matrix A is the denominator of the
wolffd@0 480 % equation above.
wolffd@0 481
wolffd@0 482 S = H*(P*D);
wolffd@0 483 A = H*(P*Known);
wolffd@0 484
wolffd@0 485 % If you'd rather make this without using the Voronoi sets try the following:
wolffd@0 486 % Hi = H(:,bmus);
wolffd@0 487 % S = Hi * D; % "sum_i (h_i * d_i)"
wolffd@0 488 % A = Hi * Known; % "sum_i (h_i)"
wolffd@0 489 % The bad news is that the matrix Hi has size [munits x dlen]...
wolffd@0 490
wolffd@0 491 % only update units for which the "activation" is nonzero
wolffd@0 492 nonzero = find(A > 0);
wolffd@0 493 M(nonzero) = S(nonzero) ./ A(nonzero);
wolffd@0 494
wolffd@0 495 end; % for t = 1:trainlen
wolffd@0 496
wolffd@0 497 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 498 %% Build / clean up the return arguments
wolffd@0 499
wolffd@0 500 % tracking
wolffd@0 501 if tracking > 0, fprintf(1,'\n'); end
wolffd@0 502
wolffd@0 503 % update structures
wolffd@0 504 sTrain = som_set(sTrain,'time',datestr(now,0));
wolffd@0 505 if struct_mode,
wolffd@0 506 sMap = som_set(sMap,'codebook',M,'mask',sTrain.mask,'neigh',sTrain.neigh);
wolffd@0 507 tl = length(sMap.trainhist);
wolffd@0 508 sMap.trainhist(tl+1) = sTrain;
wolffd@0 509 else
wolffd@0 510 sMap = reshape(M,orig_size);
wolffd@0 511 end
wolffd@0 512
wolffd@0 513 return;
wolffd@0 514
wolffd@0 515
wolffd@0 516 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
wolffd@0 517 %% subfunctions
wolffd@0 518
wolffd@0 519 %%%%%%%%
wolffd@0 520 function [] = trackplot(M,D,tracking,start,n,qe)
wolffd@0 521
wolffd@0 522 l = length(qe);
wolffd@0 523 elap_t = etime(clock,start);
wolffd@0 524 tot_t = elap_t*l/n;
wolffd@0 525 fprintf(1,'\rTraining: %3.0f/ %3.0f s',elap_t,tot_t)
wolffd@0 526 switch tracking
wolffd@0 527 case 1,
wolffd@0 528 case 2,
wolffd@0 529 plot(1:n,qe(1:n),(n+1):l,qe((n+1):l))
wolffd@0 530 title('Quantization error after each epoch');
wolffd@0 531 drawnow
wolffd@0 532 otherwise,
wolffd@0 533 subplot(2,1,1), plot(1:n,qe(1:n),(n+1):l,qe((n+1):l))
wolffd@0 534 title('Quantization error after each epoch');
wolffd@0 535 subplot(2,1,2), plot(M(:,1),M(:,2),'ro',D(:,1),D(:,2),'b+');
wolffd@0 536 title('First two components of map units (o) and data vectors (+)');
wolffd@0 537 drawnow
wolffd@0 538 end
wolffd@0 539 % end of trackplot