wolffd@0
|
1 function varargout = mirstd(f,varargin)
|
wolffd@0
|
2 % m = mirstd(f) returns the standard deviation along frames of the feature f
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % f can be a structure array composed of features. In this case,
|
wolffd@0
|
5 % m will be structured the same way.
|
wolffd@0
|
6
|
wolffd@0
|
7 if isa(f,'mirstruct')
|
wolffd@0
|
8 data = get(f,'Data');
|
wolffd@0
|
9 for fi = 1:length(data)
|
wolffd@0
|
10 data{fi} = mirstd(data{fi});
|
wolffd@0
|
11 end
|
wolffd@0
|
12 varargout = {set(f,'Data',data)};
|
wolffd@0
|
13 elseif isstruct(f)
|
wolffd@0
|
14 fields = fieldnames(f);
|
wolffd@0
|
15 for i = 1:length(fields)
|
wolffd@0
|
16 field = fields{i};
|
wolffd@0
|
17 stat.(field) = mirstd(f.(field));
|
wolffd@0
|
18 end
|
wolffd@0
|
19 varargout = {stat};
|
wolffd@0
|
20 else
|
wolffd@0
|
21
|
wolffd@0
|
22 normdiff.key = 'NormDiff';
|
wolffd@0
|
23 normdiff.type = 'Boolean';
|
wolffd@0
|
24 normdiff.default = 0;
|
wolffd@0
|
25 specif.option.normdiff = normdiff;
|
wolffd@0
|
26
|
wolffd@0
|
27 specif.nochunk = 1;
|
wolffd@0
|
28
|
wolffd@0
|
29 varargout = mirfunction(@mirstd,f,varargin,nargout,specif,@init,@main);
|
wolffd@0
|
30 end
|
wolffd@0
|
31
|
wolffd@0
|
32
|
wolffd@0
|
33 function [x type] = init(x,option)
|
wolffd@0
|
34 type = '';
|
wolffd@0
|
35
|
wolffd@0
|
36
|
wolffd@0
|
37 function m = main(f,option,postoption)
|
wolffd@0
|
38 if iscell(f)
|
wolffd@0
|
39 f = f{1};
|
wolffd@0
|
40 end
|
wolffd@0
|
41 if isa(f,'mirhisto')
|
wolffd@0
|
42 warning('WARNING IN MIRSTD: histograms are not taken into consideration yet.')
|
wolffd@0
|
43 m = struct;
|
wolffd@0
|
44 return
|
wolffd@0
|
45 end
|
wolffd@0
|
46 fp = get(f,'FramePos');
|
wolffd@0
|
47 ti = get(f,'Title');
|
wolffd@0
|
48 d = get(f,'Data');
|
wolffd@0
|
49 l = length(d);
|
wolffd@0
|
50 for i = 1:l
|
wolffd@0
|
51 if iscell(d{i})
|
wolffd@0
|
52 if length(d{i}) > 1
|
wolffd@0
|
53 error('ERROR IN MIRSTD: segmented data not accepted yet.');
|
wolffd@0
|
54 else
|
wolffd@0
|
55 dd = d{i}{1};
|
wolffd@0
|
56 end
|
wolffd@0
|
57 else
|
wolffd@0
|
58 dd = d{i};
|
wolffd@0
|
59 end
|
wolffd@0
|
60 if iscell(dd)
|
wolffd@0
|
61 m{i} = {zeros(1,length(dd))};
|
wolffd@0
|
62 for j = 1:length(dd)
|
wolffd@0
|
63 m{i}{1}(j) = std(dd{j});
|
wolffd@0
|
64 end
|
wolffd@0
|
65 elseif size(dd,2) < 2
|
wolffd@0
|
66 nonan = find(not(isnan(dd)));
|
wolffd@0
|
67 dn = dd(nonan);
|
wolffd@0
|
68 if option.normdiff
|
wolffd@0
|
69 m{i}{1} = norm(diff(dn,2));
|
wolffd@0
|
70 else
|
wolffd@0
|
71 m{i}{1} = std(dn,0,2);
|
wolffd@0
|
72 end
|
wolffd@0
|
73 else
|
wolffd@0
|
74 dd = mean(dd,4);
|
wolffd@0
|
75 m{i} = {NaN(size(dd,1),1,size(dd,3))};
|
wolffd@0
|
76 for k = 1:size(dd,1)
|
wolffd@0
|
77 for l = 1:size(dd,3)
|
wolffd@0
|
78 dk = dd(k,:,l);
|
wolffd@0
|
79 nonan = find(not(isnan(dk)));
|
wolffd@0
|
80 if not(isempty(nonan))
|
wolffd@0
|
81 dn = dk(nonan);
|
wolffd@0
|
82 if option.normdiff
|
wolffd@0
|
83 m{i}{1}(k,1,l) = norm(diff(dn,2));
|
wolffd@0
|
84 else
|
wolffd@0
|
85 m{i}{1}(k,1,l) = std(dn,0,2);
|
wolffd@0
|
86 end
|
wolffd@0
|
87 end
|
wolffd@0
|
88 end
|
wolffd@0
|
89 end
|
wolffd@0
|
90 end
|
wolffd@0
|
91 end
|
wolffd@0
|
92 m = mirscalar(f,'Data',m,'Title',['Standard deviation of ',ti]); |