wolffd@0
|
1 function varargout = mirbeatspectrum(orig,varargin)
|
wolffd@0
|
2 % n = mirbeatspectrum(m) evaluates the beat spectrum.
|
wolffd@0
|
3 % [n,m] = mirbeatspectrum(m) also return the similarity matrix on which
|
wolffd@0
|
4 % the estimation is made.
|
wolffd@0
|
5 % Optional argument:
|
wolffd@0
|
6 % mirbeatspectrum(...,s) specifies the estimation method.
|
wolffd@0
|
7 % Possible values:
|
wolffd@0
|
8 % s = 'Diag', summing simply along the diagonals of the matrix.
|
wolffd@0
|
9 % s = 'Autocor', based on the autocorrelation of the matrix.
|
wolffd@0
|
10 % mirbeatspectrum(...,'Distance',f) specifies the name of a dissimilarity
|
wolffd@0
|
11 % distance function, from those proposed in the Statistics Toolbox
|
wolffd@0
|
12 % (help pdist).
|
wolffd@0
|
13 % default value: f = 'cosine'
|
wolffd@0
|
14 % J. Foote, M. Cooper, U. Nam, "Audio Retrieval by Rhythmic Similarity",
|
wolffd@0
|
15 % ISMIR 2002.
|
wolffd@0
|
16
|
wolffd@0
|
17
|
wolffd@0
|
18 dist.key = 'Distance';
|
wolffd@0
|
19 dist.type = 'String';
|
wolffd@0
|
20 dist.default = 'cosine';
|
wolffd@0
|
21 option.dist = dist;
|
wolffd@0
|
22
|
wolffd@0
|
23 meth.type = 'String';
|
wolffd@0
|
24 meth.choice = {'Diag','Autocor'};
|
wolffd@0
|
25 meth.default = 'Autocor';
|
wolffd@0
|
26 option.meth = meth;
|
wolffd@0
|
27
|
wolffd@0
|
28 specif.option = option;
|
wolffd@0
|
29 varargout = mirfunction(@mirbeatspectrum,orig,varargin,nargout,specif,@init,@main);
|
wolffd@0
|
30
|
wolffd@0
|
31
|
wolffd@0
|
32 function [x type] = init(x,option)
|
wolffd@0
|
33 if not(isamir(x,'mirscalar'))
|
wolffd@0
|
34 if isamir(x,'miraudio')
|
wolffd@0
|
35 x = mirmfcc(x,'frame',.025,'s',.01,'s','Rank',8:30);
|
wolffd@0
|
36 end
|
wolffd@0
|
37 x = mirsimatrix(x,'Distance',option.dist,'Similarity');
|
wolffd@0
|
38 end
|
wolffd@0
|
39 type = 'mirscalar';
|
wolffd@0
|
40
|
wolffd@0
|
41
|
wolffd@0
|
42 function y = main(orig,option,postoption)
|
wolffd@0
|
43 if iscell(orig)
|
wolffd@0
|
44 orig = orig{1};
|
wolffd@0
|
45 end
|
wolffd@0
|
46 fp = get(orig,'FramePos');
|
wolffd@0
|
47 if not(isa(orig,'mirscalar'))
|
wolffd@0
|
48 s = get(orig,'Data');
|
wolffd@0
|
49 total = cell(1,length(s));
|
wolffd@0
|
50 for k = 1:length(s)
|
wolffd@0
|
51 for h = 1:length(s{k})
|
wolffd@0
|
52 maxfp = find(fp{k}{h}(2,:)>4,1);
|
wolffd@0
|
53 if isempty(maxfp)
|
wolffd@0
|
54 maxfp = Inf;
|
wolffd@0
|
55 else
|
wolffd@0
|
56 fp{k}{h}(:,maxfp+1:end) = [];
|
wolffd@0
|
57 end
|
wolffd@0
|
58 l = min(length(s{k}{h}),maxfp);
|
wolffd@0
|
59 total{k}{h} = zeros(1,l);
|
wolffd@0
|
60 if strcmpi(option.meth,'Diag')
|
wolffd@0
|
61 for i = 1:l
|
wolffd@0
|
62 total{k}{h}(i) = mean(diag(s{k}{h},i-1));
|
wolffd@0
|
63 end
|
wolffd@0
|
64 else
|
wolffd@0
|
65 for i = 1:l
|
wolffd@0
|
66 total{k}{h}(i) = mean(mean(s{k}{h}(:,1:l-i+1).*s{k}{h}(:,i:l)));
|
wolffd@0
|
67 end
|
wolffd@0
|
68 end
|
wolffd@0
|
69 end
|
wolffd@0
|
70 end
|
wolffd@0
|
71 else
|
wolffd@0
|
72 total = get(orig,'Data');
|
wolffd@0
|
73 end
|
wolffd@0
|
74 n = mirscalar(orig,'Data',total,'FramePos',fp,'Title','Beat Spectrum');
|
wolffd@0
|
75 y = {n orig}; |