wolffd@0
|
1 function [h, hdata] = glmhess_weighted(net, x, t, eso_w, hdata)
|
wolffd@0
|
2 %GLMHESS Evaluate the Hessian matrix for a generalised linear model.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % Description
|
wolffd@0
|
5 % H = GLMHESS(NET, X, T) takes a GLM network data structure NET, a
|
wolffd@0
|
6 % matrix X of input values, and a matrix T of target values and returns
|
wolffd@0
|
7 % the full Hessian matrix H corresponding to the second derivatives of
|
wolffd@0
|
8 % the negative log posterior distribution, evaluated for the current
|
wolffd@0
|
9 % weight and bias values as defined by NET. Note that the target data
|
wolffd@0
|
10 % is not required in the calculation, but is included to make the
|
wolffd@0
|
11 % interface uniform with NETHESS. For linear and logistic outputs, the
|
wolffd@0
|
12 % computation is very simple and is done (in effect) in one line in
|
wolffd@0
|
13 % GLMTRAIN.
|
wolffd@0
|
14 %
|
wolffd@0
|
15 % See also
|
wolffd@0
|
16 % GLM, GLMTRAIN, HESSCHEK, NETHESS
|
wolffd@0
|
17 %
|
wolffd@0
|
18 % Copyright (c) Ian T Nabney (1996-9)
|
wolffd@0
|
19
|
wolffd@0
|
20 % Check arguments for consistency
|
wolffd@0
|
21 errstring = consist(net, 'glm', x, t);
|
wolffd@0
|
22 if ~isempty(errstring);
|
wolffd@0
|
23 error(errstring);
|
wolffd@0
|
24 end
|
wolffd@0
|
25
|
wolffd@0
|
26 ndata = size(x, 1);
|
wolffd@0
|
27 nparams = net.nwts;
|
wolffd@0
|
28 nout = net.nout;
|
wolffd@0
|
29 p = glmfwd(net, x);
|
wolffd@0
|
30 inputs = [x ones(ndata, 1)];
|
wolffd@0
|
31
|
wolffd@0
|
32 if nargin == 4
|
wolffd@0
|
33 hdata = zeros(nparams); % Full Hessian matrix
|
wolffd@0
|
34 % Calculate data component of Hessian
|
wolffd@0
|
35 switch net.outfn
|
wolffd@0
|
36
|
wolffd@0
|
37 case 'softmax'
|
wolffd@0
|
38 bb_start = nparams - nout + 1; % Start of bias weights block
|
wolffd@0
|
39 ex_hess = zeros(nparams); % Contribution to Hessian from single example
|
wolffd@0
|
40 for m = 1:ndata
|
wolffd@0
|
41 X = x(m,:)'*x(m,:);
|
wolffd@0
|
42 a = diag(p(m,:))-((p(m,:)')*p(m,:));
|
wolffd@0
|
43 a=eso_w(m,1)*a;
|
wolffd@0
|
44 ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X);
|
wolffd@0
|
45 ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout);
|
wolffd@0
|
46 temp = kron(a, x(m,:));
|
wolffd@0
|
47 ex_hess(bb_start:nparams, 1:nparams-nout) = temp;
|
wolffd@0
|
48 ex_hess(1:nparams-nout, bb_start:nparams) = temp';
|
wolffd@0
|
49 hdata = hdata + ex_hess;
|
wolffd@0
|
50 end
|
wolffd@0
|
51
|
wolffd@0
|
52 otherwise
|
wolffd@0
|
53 error(['Unknown activation function ', net.actfn]);
|
wolffd@0
|
54 end
|
wolffd@0
|
55 end
|
wolffd@0
|
56
|
wolffd@0
|
57 [h, hdata] = hbayes(net, hdata);
|