annotate toolboxes/FullBNT-1.0.7/netlab3.3/netevfwd.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [y, extra, invhess] = netevfwd(w, net, x, t, x_test, invhess)
wolffd@0 2 %NETEVFWD Generic forward propagation with evidence for network
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % [Y, EXTRA] = NETEVFWD(W, NET, X, T, X_TEST) takes a network data
wolffd@0 6 % structure NET together with the input X and target T training data
wolffd@0 7 % and input test data X_TEST. It returns the normal forward propagation
wolffd@0 8 % through the network Y together with a matrix EXTRA which consists of
wolffd@0 9 % error bars (variance) for a regression problem or moderated outputs
wolffd@0 10 % for a classification problem.
wolffd@0 11 %
wolffd@0 12 % The optional argument (and return value) INVHESS is the inverse of
wolffd@0 13 % the network Hessian computed on the training data inputs and targets.
wolffd@0 14 % Passing it in avoids recomputing it, which can be a significant
wolffd@0 15 % saving for large training sets.
wolffd@0 16 %
wolffd@0 17 % See also
wolffd@0 18 % MLPEVFWD, RBFEVFWD, GLMEVFWD, FEVBAYES
wolffd@0 19 %
wolffd@0 20
wolffd@0 21 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 22
wolffd@0 23 func = [net.type, 'evfwd'];
wolffd@0 24 net = netunpak(net, w);
wolffd@0 25 if nargin == 5
wolffd@0 26 [y, extra, invhess] = feval(func, net, x, t, x_test);
wolffd@0 27 else
wolffd@0 28 [y, extra, invhess] = feval(func, net, x, t, x_test, invhess);
wolffd@0 29 end