annotate toolboxes/FullBNT-1.0.7/netlab3.3/mlphess.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [h, hdata] = mlphess(net, x, t, hdata)
wolffd@0 2 %MLPHESS Evaluate the Hessian matrix for a multi-layer perceptron network.
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % H = MLPHESS(NET, X, T) takes an MLP network data structure NET, a
wolffd@0 6 % matrix X of input values, and a matrix T of target values and returns
wolffd@0 7 % the full Hessian matrix H corresponding to the second derivatives of
wolffd@0 8 % the negative log posterior distribution, evaluated for the current
wolffd@0 9 % weight and bias values as defined by NET.
wolffd@0 10 %
wolffd@0 11 % [H, HDATA] = MLPHESS(NET, X, T) returns both the Hessian matrix H and
wolffd@0 12 % the contribution HDATA arising from the data dependent term in the
wolffd@0 13 % Hessian.
wolffd@0 14 %
wolffd@0 15 % H = MLPHESS(NET, X, T, HDATA) takes a network data structure NET, a
wolffd@0 16 % matrix X of input values, and a matrix T of target values, together
wolffd@0 17 % with the contribution HDATA arising from the data dependent term in
wolffd@0 18 % the Hessian, and returns the full Hessian matrix H corresponding to
wolffd@0 19 % the second derivatives of the negative log posterior distribution.
wolffd@0 20 % This version saves computation time if HDATA has already been
wolffd@0 21 % evaluated for the current weight and bias values.
wolffd@0 22 %
wolffd@0 23 % See also
wolffd@0 24 % MLP, HESSCHEK, MLPHDOTV, EVIDENCE
wolffd@0 25 %
wolffd@0 26
wolffd@0 27 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 28
wolffd@0 29 % Check arguments for consistency
wolffd@0 30 errstring = consist(net, 'mlp', x, t);
wolffd@0 31 if ~isempty(errstring);
wolffd@0 32 error(errstring);
wolffd@0 33 end
wolffd@0 34
wolffd@0 35 if nargin == 3
wolffd@0 36 % Data term in Hessian needs to be computed
wolffd@0 37 hdata = datahess(net, x, t);
wolffd@0 38 end
wolffd@0 39
wolffd@0 40 [h, hdata] = hbayes(net, hdata);
wolffd@0 41
wolffd@0 42 % Sub-function to compute data part of Hessian
wolffd@0 43 function hdata = datahess(net, x, t)
wolffd@0 44
wolffd@0 45 hdata = zeros(net.nwts, net.nwts);
wolffd@0 46
wolffd@0 47 for v = eye(net.nwts);
wolffd@0 48 hdata(find(v),:) = mlphdotv(net, x, t, v);
wolffd@0 49 end
wolffd@0 50
wolffd@0 51 return