annotate toolboxes/FullBNT-1.0.7/netlab3.3/mlpgrad.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [g, gdata, gprior] = mlpgrad(net, x, t)
wolffd@0 2 %MLPGRAD Evaluate gradient of error function for 2-layer network.
wolffd@0 3 %
wolffd@0 4 % Description
wolffd@0 5 % G = MLPGRAD(NET, X, T) takes a network data structure NET together
wolffd@0 6 % with a matrix X of input vectors and a matrix T of target vectors,
wolffd@0 7 % and evaluates the gradient G of the error function with respect to
wolffd@0 8 % the network weights. The error funcion corresponds to the choice of
wolffd@0 9 % output unit activation function. Each row of X corresponds to one
wolffd@0 10 % input vector and each row of T corresponds to one target vector.
wolffd@0 11 %
wolffd@0 12 % [G, GDATA, GPRIOR] = MLPGRAD(NET, X, T) also returns separately the
wolffd@0 13 % data and prior contributions to the gradient. In the case of multiple
wolffd@0 14 % groups in the prior, GPRIOR is a matrix with a row for each group and
wolffd@0 15 % a column for each weight parameter.
wolffd@0 16 %
wolffd@0 17 % See also
wolffd@0 18 % MLP, MLPPAK, MLPUNPAK, MLPFWD, MLPERR, MLPBKP
wolffd@0 19 %
wolffd@0 20
wolffd@0 21 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 22
wolffd@0 23 % Check arguments for consistency
wolffd@0 24 errstring = consist(net, 'mlp', x, t);
wolffd@0 25 if ~isempty(errstring);
wolffd@0 26 error(errstring);
wolffd@0 27 end
wolffd@0 28 [y, z] = mlpfwd(net, x);
wolffd@0 29 delout = y - t;
wolffd@0 30
wolffd@0 31 gdata = mlpbkp(net, x, z, delout);
wolffd@0 32
wolffd@0 33 [g, gdata, gprior] = gbayes(net, gdata);