Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/netlab3.3/gpcovarp.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 function [covp, covf] = gpcovarp(net, x1, x2) |
wolffd@0 | 2 %GPCOVARP Calculate the prior covariance for a Gaussian Process. |
wolffd@0 | 3 % |
wolffd@0 | 4 % Description |
wolffd@0 | 5 % |
wolffd@0 | 6 % COVP = GPCOVARP(NET, X1, X2) takes a Gaussian Process data structure |
wolffd@0 | 7 % NET together with two matrices X1 and X2 of input vectors, and |
wolffd@0 | 8 % computes the matrix of the prior covariance. This is the function |
wolffd@0 | 9 % component of the covariance plus the exponential of the bias term. |
wolffd@0 | 10 % |
wolffd@0 | 11 % [COVP, COVF] = GPCOVARP(NET, X1, X2) also returns the function |
wolffd@0 | 12 % component of the covariance. |
wolffd@0 | 13 % |
wolffd@0 | 14 % See also |
wolffd@0 | 15 % GP, GPCOVAR, GPCOVARF, GPERR, GPGRAD |
wolffd@0 | 16 % |
wolffd@0 | 17 |
wolffd@0 | 18 % Copyright (c) Ian T Nabney (1996-2001) |
wolffd@0 | 19 |
wolffd@0 | 20 errstring = consist(net, 'gp', x1); |
wolffd@0 | 21 if ~isempty(errstring); |
wolffd@0 | 22 error(errstring); |
wolffd@0 | 23 end |
wolffd@0 | 24 |
wolffd@0 | 25 if size(x1, 2) ~= size(x2, 2) |
wolffd@0 | 26 error('Number of variables in x1 and x2 must be the same'); |
wolffd@0 | 27 end |
wolffd@0 | 28 |
wolffd@0 | 29 covf = gpcovarf(net, x1, x2); |
wolffd@0 | 30 covp = covf + exp(net.bias); |