annotate toolboxes/FullBNT-1.0.7/netlab3.3/demhmc2.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 %DEMHMC2 Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.
wolffd@0 2 %
wolffd@0 3 % Description
wolffd@0 4 % The problem consists of one input variable X and one target variable
wolffd@0 5 % T with data generated by sampling X at equal intervals and then
wolffd@0 6 % generating target data by computing SIN(2*PI*X) and adding Gaussian
wolffd@0 7 % noise. The model is a 2-layer network with linear outputs, and the
wolffd@0 8 % hybrid Monte Carlo algorithm (without persistence) is used to sample
wolffd@0 9 % from the posterior distribution of the weights. The graph shows the
wolffd@0 10 % underlying function, 100 samples from the function given by the
wolffd@0 11 % posterior distribution of the weights, and the average prediction
wolffd@0 12 % (weighted by the posterior probabilities).
wolffd@0 13 %
wolffd@0 14 % See also
wolffd@0 15 % DEMHMC3, HMC, MLP, MLPERR, MLPGRAD
wolffd@0 16 %
wolffd@0 17
wolffd@0 18 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 19
wolffd@0 20
wolffd@0 21 % Generate the matrix of inputs x and targets t.
wolffd@0 22 ndata = 20; % Number of data points.
wolffd@0 23 noise = 0.1; % Standard deviation of noise distribution.
wolffd@0 24 nin = 1; % Number of inputs.
wolffd@0 25 nout = 1; % Number of outputs.
wolffd@0 26
wolffd@0 27 seed = 42; % Seed for random weight initialization.
wolffd@0 28 randn('state', seed);
wolffd@0 29 rand('state', seed);
wolffd@0 30
wolffd@0 31 x = 0.25 + 0.1*randn(ndata, nin);
wolffd@0 32 t = sin(2*pi*x) + noise*randn(size(x));
wolffd@0 33
wolffd@0 34 clc
wolffd@0 35 disp('This demonstration illustrates the use of the hybrid Monte Carlo')
wolffd@0 36 disp('algorithm to sample from the posterior weight distribution of a')
wolffd@0 37 disp('multi-layer perceptron.')
wolffd@0 38 disp(' ')
wolffd@0 39 disp('A regression problem is used, with the one-dimensional data drawn')
wolffd@0 40 disp('from a noisy sine function. The x values are sampled from a normal')
wolffd@0 41 disp('distribution with mean 0.25 and variance 0.01.')
wolffd@0 42 disp(' ')
wolffd@0 43 disp('First we initialise the network.')
wolffd@0 44 disp(' ')
wolffd@0 45 disp('Press any key to continue.')
wolffd@0 46 pause
wolffd@0 47
wolffd@0 48 % Set up network parameters.
wolffd@0 49 nhidden = 5; % Number of hidden units.
wolffd@0 50 alpha = 0.001; % Coefficient of weight-decay prior.
wolffd@0 51 beta = 100.0; % Coefficient of data error.
wolffd@0 52
wolffd@0 53 % Create and initialize network model.
wolffd@0 54 % Initialise weights reasonably close to 0
wolffd@0 55 net = mlp(nin, nhidden, nout, 'linear', alpha, beta);
wolffd@0 56 net = mlpinit(net, 10);
wolffd@0 57
wolffd@0 58 clc
wolffd@0 59 disp('Next we take 100 samples from the posterior distribution. The first')
wolffd@0 60 disp('200 samples at the start of the chain are omitted. As persistence')
wolffd@0 61 disp('is not used, the momentum is randomised at each step. 100 iterations')
wolffd@0 62 disp('are used at each step. The new state is accepted if the threshold')
wolffd@0 63 disp('value is greater than a random number between 0 and 1.')
wolffd@0 64 disp(' ')
wolffd@0 65 disp('Negative step numbers indicate samples discarded from the start of the')
wolffd@0 66 disp('chain.')
wolffd@0 67 disp(' ')
wolffd@0 68 disp('Press any key to continue.')
wolffd@0 69 pause
wolffd@0 70 % Set up vector of options for hybrid Monte Carlo.
wolffd@0 71 nsamples = 100; % Number of retained samples.
wolffd@0 72
wolffd@0 73 options = foptions; % Default options vector.
wolffd@0 74 options(1) = 1; % Switch on diagnostics.
wolffd@0 75 options(7) = 100; % Number of steps in trajectory.
wolffd@0 76 options(14) = nsamples; % Number of Monte Carlo samples returned.
wolffd@0 77 options(15) = 200; % Number of samples omitted at start of chain.
wolffd@0 78 options(18) = 0.002; % Step size.
wolffd@0 79
wolffd@0 80 w = mlppak(net);
wolffd@0 81 % Initialise HMC
wolffd@0 82 hmc('state', 42);
wolffd@0 83 [samples, energies] = hmc('neterr', w, options, 'netgrad', net, x, t);
wolffd@0 84
wolffd@0 85 clc
wolffd@0 86 disp('The plot shows the underlying noise free function, the 100 samples')
wolffd@0 87 disp('produced from the MLP, and their average as a Monte Carlo estimate')
wolffd@0 88 disp('of the true posterior average.')
wolffd@0 89 disp(' ')
wolffd@0 90 disp('Press any key to continue.')
wolffd@0 91 pause
wolffd@0 92 nplot = 300;
wolffd@0 93 plotvals = [0 : 1/(nplot - 1) : 1]';
wolffd@0 94 pred = zeros(size(plotvals));
wolffd@0 95 fh = figure;
wolffd@0 96 for k = 1:nsamples
wolffd@0 97 w2 = samples(k,:);
wolffd@0 98 net2 = mlpunpak(net, w2);
wolffd@0 99 y = mlpfwd(net2, plotvals);
wolffd@0 100 % Average sample predictions as Monte Carlo estimate of true integral
wolffd@0 101 pred = pred + y;
wolffd@0 102 h4 = plot(plotvals, y, '-r', 'LineWidth', 1);
wolffd@0 103 if k == 1
wolffd@0 104 hold on
wolffd@0 105 end
wolffd@0 106 end
wolffd@0 107 pred = pred./nsamples;
wolffd@0 108
wolffd@0 109 % Plot data
wolffd@0 110 h1 = plot(x, t, 'ob', 'LineWidth', 2, 'MarkerFaceColor', 'blue');
wolffd@0 111 axis([0 1 -3 3])
wolffd@0 112
wolffd@0 113 % Plot function
wolffd@0 114 [fx, fy] = fplot('sin(2*pi*x)', [0 1], '--g');
wolffd@0 115 h2 = plot(fx, fy, '--g', 'LineWidth', 2);
wolffd@0 116 set(gca, 'box', 'on');
wolffd@0 117
wolffd@0 118 % Plot averaged prediction
wolffd@0 119 h3 = plot(plotvals, pred, '-c', 'LineWidth', 2);
wolffd@0 120 hold off
wolffd@0 121
wolffd@0 122 lstrings = char('Data', 'Function', 'Prediction', 'Samples');
wolffd@0 123 legend([h1 h2 h3 h4], lstrings, 3);
wolffd@0 124
wolffd@0 125 disp('Note how the predictions become much further from the true function')
wolffd@0 126 disp('away from the region of high data density.')
wolffd@0 127 disp(' ')
wolffd@0 128 disp('Press any key to exit.')
wolffd@0 129 pause
wolffd@0 130 close(fh);
wolffd@0 131 clear all;
wolffd@0 132