annotate toolboxes/FullBNT-1.0.7/netlab3.3/demgmm3.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 %DEMGMM3 Demonstrate density modelling with a Gaussian mixture model.
wolffd@0 2 %
wolffd@0 3 % Description
wolffd@0 4 % The problem consists of modelling data generated by a mixture of
wolffd@0 5 % three Gaussians in 2 dimensions with a mixture model using diagonal
wolffd@0 6 % covariance matrices. The priors are 0.3, 0.5 and 0.2; the centres
wolffd@0 7 % are (2, 3.5), (0, 0) and (0,2); the covariances are all axis aligned
wolffd@0 8 % (0.16, 0.64), (0.25, 1) and the identity matrix. The first figure
wolffd@0 9 % contains a scatter plot of the data.
wolffd@0 10 %
wolffd@0 11 % A Gaussian mixture model with three components is trained using EM.
wolffd@0 12 % The parameter vector is printed before training and after training.
wolffd@0 13 % The user should press any key to continue at these points. The
wolffd@0 14 % parameter vector consists of priors (the column), and centres (given
wolffd@0 15 % as (x, y) pairs as the next two columns). The diagonal entries of
wolffd@0 16 % the covariance matrices are printed separately.
wolffd@0 17 %
wolffd@0 18 % The second figure is a 3 dimensional view of the density function,
wolffd@0 19 % while the third shows the axes of the 1-standard deviation circles
wolffd@0 20 % for the three components of the mixture model.
wolffd@0 21 %
wolffd@0 22 % See also
wolffd@0 23 % GMM, GMMINIT, GMMEM, GMMPROB, GMMUNPAK
wolffd@0 24 %
wolffd@0 25
wolffd@0 26 % Copyright (c) Ian T Nabney (1996-2001)
wolffd@0 27
wolffd@0 28 % Generate the data
wolffd@0 29 ndata = 500;
wolffd@0 30
wolffd@0 31 % Fix the seeds for reproducible results
wolffd@0 32 randn('state', 42);
wolffd@0 33 rand('state', 42);
wolffd@0 34 data = randn(ndata, 2);
wolffd@0 35 prior = [0.3 0.5 0.2];
wolffd@0 36 % Mixture model swaps clusters 1 and 3
wolffd@0 37 datap = [0.2 0.5 0.3];
wolffd@0 38 datac = [0 2; 0 0; 2 3.5];
wolffd@0 39 datacov = [1 1;1 0.25; 0.4*0.4 0.8*0.8];
wolffd@0 40 data1 = data(1:prior(1)*ndata,:);
wolffd@0 41 data2 = data(prior(1)*ndata+1:(prior(2)+prior(1))*ndata, :);
wolffd@0 42 data3 = data((prior(1)+prior(2))*ndata +1:ndata, :);
wolffd@0 43
wolffd@0 44 % First cluster has axis aligned variance and centre (2, 3.5)
wolffd@0 45 data1(:, 1) = data1(:, 1)*0.4 + 2.0;
wolffd@0 46 data1(:, 2) = data1(:, 2)*0.8 + 3.5;
wolffd@0 47
wolffd@0 48 % Second cluster has axis aligned variance and centre (0, 0)
wolffd@0 49 data2(:,2) = data2(:, 2)*0.5;
wolffd@0 50
wolffd@0 51 % Third cluster is at (0,2) with identity matrix for covariance
wolffd@0 52 data3 = data3 + repmat([0 2], prior(3)*ndata, 1);
wolffd@0 53
wolffd@0 54 % Put the dataset together again
wolffd@0 55 data = [data1; data2; data3];
wolffd@0 56
wolffd@0 57 clc
wolffd@0 58 disp('This demonstration illustrates the use of a Gaussian mixture model')
wolffd@0 59 disp('with diagonal covariance matrices to approximate the unconditional')
wolffd@0 60 disp('probability density of data in a two-dimensional space.')
wolffd@0 61 disp('We begin by generating the data from a mixture of three Gaussians')
wolffd@0 62 disp('with axis aligned covariance structure and plotting it.')
wolffd@0 63 disp(' ')
wolffd@0 64 disp('The first cluster has centre (0, 2).')
wolffd@0 65 disp('The second cluster has centre (0, 0).')
wolffd@0 66 disp('The third cluster has centre (2, 3.5).')
wolffd@0 67 disp(' ')
wolffd@0 68 disp('Press any key to continue')
wolffd@0 69 pause
wolffd@0 70
wolffd@0 71 fh1 = figure;
wolffd@0 72 plot(data(:, 1), data(:, 2), 'o')
wolffd@0 73 set(gca, 'Box', 'on')
wolffd@0 74
wolffd@0 75 % Set up mixture model
wolffd@0 76 ncentres = 3;
wolffd@0 77 input_dim = 2;
wolffd@0 78 mix = gmm(input_dim, ncentres, 'diag');
wolffd@0 79
wolffd@0 80 options = foptions;
wolffd@0 81 options(14) = 5; % Just use 5 iterations of k-means in initialisation
wolffd@0 82 % Initialise the model parameters from the data
wolffd@0 83 mix = gmminit(mix, data, options);
wolffd@0 84
wolffd@0 85 % Print out model
wolffd@0 86 disp('The mixture model has three components and diagonal covariance')
wolffd@0 87 disp('matrices. The model parameters after initialisation using the')
wolffd@0 88 disp('k-means algorithm are as follows')
wolffd@0 89 disp(' Priors Centres')
wolffd@0 90 disp([mix.priors' mix.centres])
wolffd@0 91 disp('Covariance diagonals are')
wolffd@0 92 disp(mix.covars)
wolffd@0 93 disp('Press any key to continue.')
wolffd@0 94 pause
wolffd@0 95
wolffd@0 96 % Set up vector of options for EM trainer
wolffd@0 97 options = zeros(1, 18);
wolffd@0 98 options(1) = 1; % Prints out error values.
wolffd@0 99 options(14) = 20; % Number of iterations.
wolffd@0 100
wolffd@0 101 disp('We now train the model using the EM algorithm for 20 iterations.')
wolffd@0 102 disp(' ')
wolffd@0 103 disp('Press any key to continue.')
wolffd@0 104 pause
wolffd@0 105
wolffd@0 106 [mix, options, errlog] = gmmem(mix, data, options);
wolffd@0 107
wolffd@0 108 % Print out model
wolffd@0 109 disp(' ')
wolffd@0 110 disp('The trained model has priors and centres:')
wolffd@0 111 disp(' Priors Centres')
wolffd@0 112 disp([mix.priors' mix.centres])
wolffd@0 113 disp('The data generator has priors and centres')
wolffd@0 114 disp(' Priors Centres')
wolffd@0 115 disp([datap' datac])
wolffd@0 116 disp('Model covariance diagonals are')
wolffd@0 117 disp(mix.covars)
wolffd@0 118 disp('Data generator covariance diagonals are')
wolffd@0 119 disp(datacov)
wolffd@0 120 disp('Note the close correspondence between these parameters and those')
wolffd@0 121 disp('of the distribution used to generate the data.')
wolffd@0 122 disp(' ')
wolffd@0 123 disp('Press any key to continue.')
wolffd@0 124 pause
wolffd@0 125
wolffd@0 126 clc
wolffd@0 127 disp('We now plot the density given by the mixture model as a surface plot.')
wolffd@0 128 disp(' ')
wolffd@0 129 disp('Press any key to continue.')
wolffd@0 130 pause
wolffd@0 131
wolffd@0 132 % Plot the result
wolffd@0 133 x = -4.0:0.2:5.0;
wolffd@0 134 y = -4.0:0.2:5.0;
wolffd@0 135 [X, Y] = meshgrid(x,y);
wolffd@0 136 X = X(:);
wolffd@0 137 Y = Y(:);
wolffd@0 138 grid = [X Y];
wolffd@0 139 Z = gmmprob(mix, grid);
wolffd@0 140 Z = reshape(Z, length(x), length(y));
wolffd@0 141 c = mesh(x, y, Z);
wolffd@0 142 hold on
wolffd@0 143 title('Surface plot of probability density')
wolffd@0 144 hold off
wolffd@0 145 drawnow
wolffd@0 146
wolffd@0 147 clc
wolffd@0 148 disp('The final plot shows the centres and widths, given by one standard')
wolffd@0 149 disp('deviation, of the three components of the mixture model. The axes')
wolffd@0 150 disp('of the ellipses of constant density are shown.')
wolffd@0 151 disp(' ')
wolffd@0 152 disp('Press any key to continue.')
wolffd@0 153 pause
wolffd@0 154
wolffd@0 155 % Try to calculate a sensible position for the second figure, below the first
wolffd@0 156 fig1_pos = get(fh1, 'Position');
wolffd@0 157 fig2_pos = fig1_pos;
wolffd@0 158 fig2_pos(2) = fig2_pos(2) - fig1_pos(4);
wolffd@0 159 fh2 = figure('Position', fig2_pos);
wolffd@0 160
wolffd@0 161 h = plot(data(:, 1), data(:, 2), 'bo');
wolffd@0 162 hold on
wolffd@0 163 axis('equal');
wolffd@0 164 title('Plot of data and covariances')
wolffd@0 165 for i = 1:ncentres
wolffd@0 166 v = [1 0];
wolffd@0 167 for j = 1:2
wolffd@0 168 start=mix.centres(i,:)-sqrt(mix.covars(i,:).*v);
wolffd@0 169 endpt=mix.centres(i,:)+sqrt(mix.covars(i,:).*v);
wolffd@0 170 linex = [start(1) endpt(1)];
wolffd@0 171 liney = [start(2) endpt(2)];
wolffd@0 172 line(linex, liney, 'Color', 'k', 'LineWidth', 3)
wolffd@0 173 v = [0 1];
wolffd@0 174 end
wolffd@0 175 % Plot ellipses of one standard deviation
wolffd@0 176 theta = 0:0.02:2*pi;
wolffd@0 177 x = sqrt(mix.covars(i,1))*cos(theta) + mix.centres(i,1);
wolffd@0 178 y = sqrt(mix.covars(i,2))*sin(theta) + mix.centres(i,2);
wolffd@0 179 plot(x, y, 'r-');
wolffd@0 180 end
wolffd@0 181 hold off
wolffd@0 182
wolffd@0 183 disp('Note how the data cluster positions and widths are captured by')
wolffd@0 184 disp('the mixture model.')
wolffd@0 185 disp(' ')
wolffd@0 186 disp('Press any key to end.')
wolffd@0 187 pause
wolffd@0 188
wolffd@0 189 close(fh1);
wolffd@0 190 close(fh2);
wolffd@0 191 clear all;
wolffd@0 192