wolffd@0
|
1 %DEMGLM1 Demonstrate simple classification using a generalized linear model.
|
wolffd@0
|
2 %
|
wolffd@0
|
3 % Description
|
wolffd@0
|
4 % The problem consists of a two dimensional input matrix DATA and a
|
wolffd@0
|
5 % vector of classifications T. The data is generated from two
|
wolffd@0
|
6 % Gaussian clusters, and a generalized linear model with logistic
|
wolffd@0
|
7 % output is trained using iterative reweighted least squares. A plot of
|
wolffd@0
|
8 % the data together with the 0.1, 0.5 and 0.9 contour lines of the
|
wolffd@0
|
9 % conditional probability is generated.
|
wolffd@0
|
10 %
|
wolffd@0
|
11 % See also
|
wolffd@0
|
12 % DEMGLM2, GLM, GLMTRAIN
|
wolffd@0
|
13 %
|
wolffd@0
|
14
|
wolffd@0
|
15 % Copyright (c) Ian T Nabney (1996-2001)
|
wolffd@0
|
16
|
wolffd@0
|
17
|
wolffd@0
|
18 % Generate data from two classes in 2d
|
wolffd@0
|
19 input_dim = 2;
|
wolffd@0
|
20
|
wolffd@0
|
21 % Fix seeds for reproducible results
|
wolffd@0
|
22 randn('state', 42);
|
wolffd@0
|
23 rand('state', 42);
|
wolffd@0
|
24
|
wolffd@0
|
25 ndata = 100;
|
wolffd@0
|
26 % Generate mixture of two Gaussians in two dimensional space
|
wolffd@0
|
27 mix = gmm(2, 2, 'spherical');
|
wolffd@0
|
28 mix.priors = [0.4 0.6]; % Cluster priors
|
wolffd@0
|
29 mix.centres = [2.0, 2.0; 0.0, 0.0]; % Cluster centres
|
wolffd@0
|
30 mix.covars = [0.5, 1.0];
|
wolffd@0
|
31
|
wolffd@0
|
32 [data, label] = gmmsamp(mix, ndata);
|
wolffd@0
|
33 targets = label - ones(ndata, 1);
|
wolffd@0
|
34
|
wolffd@0
|
35 % Plot the result
|
wolffd@0
|
36
|
wolffd@0
|
37 clc
|
wolffd@0
|
38 disp('This demonstration illustrates the use of a generalized linear model')
|
wolffd@0
|
39 disp('to classify data from two classes in a two-dimensional space. We')
|
wolffd@0
|
40 disp('begin by generating and plotting the data.')
|
wolffd@0
|
41 disp(' ')
|
wolffd@0
|
42 disp('Press any key to continue.')
|
wolffd@0
|
43 pause
|
wolffd@0
|
44
|
wolffd@0
|
45 fh1 = figure;
|
wolffd@0
|
46 plot(data(label==1,1), data(label==1,2), 'bo');
|
wolffd@0
|
47 hold on
|
wolffd@0
|
48 axis([-4 5 -4 5])
|
wolffd@0
|
49 set(gca, 'box', 'on')
|
wolffd@0
|
50 plot(data(label==2,1), data(label==2,2), 'rx')
|
wolffd@0
|
51 title('Data')
|
wolffd@0
|
52
|
wolffd@0
|
53 clc
|
wolffd@0
|
54 disp('Now we fit a model consisting of a logistic sigmoid function of')
|
wolffd@0
|
55 disp('a linear combination of the input variables.')
|
wolffd@0
|
56 disp(' ')
|
wolffd@0
|
57 disp('The model is trained using the IRLS algorithm for 5 iterations')
|
wolffd@0
|
58 disp(' ')
|
wolffd@0
|
59 disp('Press any key to continue.')
|
wolffd@0
|
60 pause
|
wolffd@0
|
61
|
wolffd@0
|
62 net = glm(input_dim, 1, 'logistic');
|
wolffd@0
|
63 options = foptions;
|
wolffd@0
|
64 options(1) = 1;
|
wolffd@0
|
65 options(14) = 5;
|
wolffd@0
|
66 net = glmtrain(net, options, data, targets);
|
wolffd@0
|
67
|
wolffd@0
|
68 disp(' ')
|
wolffd@0
|
69 disp('We now plot some density contours given by this model.')
|
wolffd@0
|
70 disp('The contour labelled 0.5 is the decision boundary.')
|
wolffd@0
|
71 disp(' ')
|
wolffd@0
|
72 disp('Press any key to continue.')
|
wolffd@0
|
73 pause
|
wolffd@0
|
74 x = -4.0:0.2:5.0;
|
wolffd@0
|
75 y = -4.0:0.2:5.0;
|
wolffd@0
|
76 [X, Y] = meshgrid(x,y);
|
wolffd@0
|
77 X = X(:);
|
wolffd@0
|
78 Y = Y(:);
|
wolffd@0
|
79 grid = [X Y];
|
wolffd@0
|
80 Z = glmfwd(net, grid);
|
wolffd@0
|
81 Z = reshape(Z, length(x), length(y));
|
wolffd@0
|
82 v = [0.1 0.5 0.9];
|
wolffd@0
|
83 [c, h] = contour(x, y, Z, v);
|
wolffd@0
|
84 title('Generalized Linear Model')
|
wolffd@0
|
85 set(h, 'linewidth', 3)
|
wolffd@0
|
86 clabel(c, h);
|
wolffd@0
|
87
|
wolffd@0
|
88 clc
|
wolffd@0
|
89 disp('Note that the contours of constant density are straight lines.')
|
wolffd@0
|
90 disp(' ')
|
wolffd@0
|
91 disp('Press any key to end.')
|
wolffd@0
|
92 pause
|
wolffd@0
|
93 close(fh1);
|
wolffd@0
|
94 clear all;
|
wolffd@0
|
95
|