annotate toolboxes/FullBNT-1.0.7/nethelp3.3/metrop.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual metrop
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> metrop
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Markov Chain Monte Carlo sampling with Metropolis algorithm.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19
wolffd@0 20 samples = metrop(f, x, options)
wolffd@0 21 samples = metrop(f, x, options, [], P1, P2, ...)
wolffd@0 22 [samples, energies, diagn] = metrop(f, x, options)
wolffd@0 23 s = metrop('state')
wolffd@0 24 metrop('state', s)
wolffd@0 25 </PRE>
wolffd@0 26
wolffd@0 27
wolffd@0 28 <p><h2>
wolffd@0 29 Description
wolffd@0 30 </h2>
wolffd@0 31
wolffd@0 32 <CODE>samples = metrop(f, x, options)</CODE> uses
wolffd@0 33 the Metropolis algorithm to sample from the distribution
wolffd@0 34 <CODE>p ~ exp(-f)</CODE>, where <CODE>f</CODE> is the first argument to <CODE>metrop</CODE>.
wolffd@0 35 The Markov chain starts at the point <CODE>x</CODE> and each
wolffd@0 36 candidate state is picked from a Gaussian proposal distribution and
wolffd@0 37 accepted or rejected according to the Metropolis criterion.
wolffd@0 38
wolffd@0 39 <p><CODE>samples = metrop(f, x, options, [], p1, p2, ...)</CODE> allows
wolffd@0 40 additional arguments to be passed to <CODE>f()</CODE>. The fourth argument is
wolffd@0 41 ignored, but is included for compatibility with <CODE>hmc</CODE> and the
wolffd@0 42 optimisers.
wolffd@0 43
wolffd@0 44 <p><CODE>[samples, energies, diagn] = metrop(f, x, options)</CODE> also returns
wolffd@0 45 a log of the energy values (i.e. negative log probabilities) for the
wolffd@0 46 samples in <CODE>energies</CODE> and <CODE>diagn</CODE>, a structure containing
wolffd@0 47 diagnostic information (position and
wolffd@0 48 acceptance threshold) for each step of the chain in <CODE>diagn.pos</CODE> and
wolffd@0 49 <CODE>diagn.acc</CODE> respectively. All candidate states (including rejected
wolffd@0 50 ones) are stored in <CODE>diagn.pos</CODE>.
wolffd@0 51
wolffd@0 52 <p><CODE>s = metrop('state')</CODE> returns a state structure that contains the
wolffd@0 53 state of the two random number generators <CODE>rand</CODE> and <CODE>randn</CODE>.
wolffd@0 54 These are contained in fields
wolffd@0 55 <CODE>randstate</CODE>,
wolffd@0 56 <CODE>randnstate</CODE>.
wolffd@0 57
wolffd@0 58 <p><CODE>metrop('state', s)</CODE> resets the state to <CODE>s</CODE>. If <CODE>s</CODE> is an integer,
wolffd@0 59 then it is passed to <CODE>rand</CODE> and <CODE>randn</CODE>.
wolffd@0 60 If <CODE>s</CODE> is a structure returned by <CODE>metrop('state')</CODE> then
wolffd@0 61 it resets the generator to exactly the same state.
wolffd@0 62
wolffd@0 63 <p>The optional parameters in the <CODE>options</CODE> vector have the following
wolffd@0 64 interpretations.
wolffd@0 65
wolffd@0 66 <p><CODE>options(1)</CODE> is set to 1 to display the energy values and rejection
wolffd@0 67 threshold at each step of the Markov chain. If the value is 2, then the
wolffd@0 68 position vectors at each step are also displayed.
wolffd@0 69
wolffd@0 70 <p><CODE>options(14)</CODE> is the number of samples retained from the Markov chain;
wolffd@0 71 default 100.
wolffd@0 72
wolffd@0 73 <p><CODE>options(15)</CODE> is the number of samples omitted from the start of the
wolffd@0 74 chain; default 0.
wolffd@0 75
wolffd@0 76 <p><CODE>options(18)</CODE> is the variance of the proposal distribution; default 1.
wolffd@0 77
wolffd@0 78 <p><h2>
wolffd@0 79 Examples
wolffd@0 80 </h2>
wolffd@0 81 The following code fragment samples from the posterior distribution of
wolffd@0 82 weights for a neural network.
wolffd@0 83 <PRE>
wolffd@0 84
wolffd@0 85 w = mlppak(net);
wolffd@0 86 [samples, energies] = metrop('neterr', w, options, 'netgrad', net, x, t);
wolffd@0 87 </PRE>
wolffd@0 88
wolffd@0 89
wolffd@0 90 <p><h2>
wolffd@0 91 Algorithm
wolffd@0 92 </h2>
wolffd@0 93
wolffd@0 94 The algorithm follows the procedure outlined in Radford Neal's technical
wolffd@0 95 report CRG-TR-93-1 from the University of Toronto.
wolffd@0 96
wolffd@0 97 <p><h2>
wolffd@0 98 See Also
wolffd@0 99 </h2>
wolffd@0 100 <CODE><a href="hmc.htm">hmc</a></CODE><hr>
wolffd@0 101 <b>Pages:</b>
wolffd@0 102 <a href="index.htm">Index</a>
wolffd@0 103 <hr>
wolffd@0 104 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 105
wolffd@0 106
wolffd@0 107 </body>
wolffd@0 108 </html>