annotate toolboxes/FullBNT-1.0.7/nethelp3.3/gperr.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual gperr
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> gperr
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Evaluate error function for Gaussian Process.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Synopsis
wolffd@0 17 </h2>
wolffd@0 18 <PRE>
wolffd@0 19 edata = gperr(net, x, t)
wolffd@0 20 [e, edata, eprior] = gperr(net, x, t)
wolffd@0 21 </PRE>
wolffd@0 22
wolffd@0 23
wolffd@0 24 <p><h2>
wolffd@0 25 Description
wolffd@0 26 </h2>
wolffd@0 27 <CODE>e = gperr(net, x, t)</CODE> takes a Gaussian Process data structure <CODE>net</CODE> together
wolffd@0 28 with a matrix <CODE>x</CODE> of input vectors and a matrix <CODE>t</CODE> of target
wolffd@0 29 vectors, and evaluates the error function <CODE>e</CODE>. Each row
wolffd@0 30 of <CODE>x</CODE> corresponds to one input vector and each row of <CODE>t</CODE>
wolffd@0 31 corresponds to one target vector.
wolffd@0 32
wolffd@0 33 <p><CODE>[e, edata, eprior] = gperr(net, x, t)</CODE> additionally returns the
wolffd@0 34 data and hyperprior components of the error, assuming a Gaussian
wolffd@0 35 prior on the weights with mean and variance parameters <CODE>prmean</CODE> and
wolffd@0 36 <CODE>prvariance</CODE> taken from the network data structure <CODE>net</CODE>.
wolffd@0 37
wolffd@0 38 <p><h2>
wolffd@0 39 See Also
wolffd@0 40 </h2>
wolffd@0 41 <CODE><a href="gp.htm">gp</a></CODE>, <CODE><a href="gpcovar.htm">gpcovar</a></CODE>, <CODE><a href="gpfwd.htm">gpfwd</a></CODE>, <CODE><a href="gpgrad.htm">gpgrad</a></CODE><hr>
wolffd@0 42 <b>Pages:</b>
wolffd@0 43 <a href="index.htm">Index</a>
wolffd@0 44 <hr>
wolffd@0 45 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 46
wolffd@0 47
wolffd@0 48 </body>
wolffd@0 49 </html>