annotate toolboxes/FullBNT-1.0.7/nethelp3.3/conjgrad.htm @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 <html>
wolffd@0 2 <head>
wolffd@0 3 <title>
wolffd@0 4 Netlab Reference Manual conjgrad
wolffd@0 5 </title>
wolffd@0 6 </head>
wolffd@0 7 <body>
wolffd@0 8 <H1> conjgrad
wolffd@0 9 </H1>
wolffd@0 10 <h2>
wolffd@0 11 Purpose
wolffd@0 12 </h2>
wolffd@0 13 Conjugate gradients optimization.
wolffd@0 14
wolffd@0 15 <p><h2>
wolffd@0 16 Description
wolffd@0 17 </h2>
wolffd@0 18 <CODE>[x, options, flog, pointlog] = conjgrad(f, x, options, gradf)</CODE> uses a
wolffd@0 19 conjugate gradients
wolffd@0 20 algorithm to find the minimum of the function <CODE>f(x)</CODE> whose
wolffd@0 21 gradient is given by <CODE>gradf(x)</CODE>. Here <CODE>x</CODE> is a row vector
wolffd@0 22 and <CODE>f</CODE> returns a scalar value.
wolffd@0 23 The point at which <CODE>f</CODE> has a local minimum
wolffd@0 24 is returned as <CODE>x</CODE>. The function value at that point is returned
wolffd@0 25 in <CODE>options(8)</CODE>. A log of the function values
wolffd@0 26 after each cycle is (optionally) returned in <CODE>flog</CODE>, and a log
wolffd@0 27 of the points visited is (optionally) returned in <CODE>pointlog</CODE>.
wolffd@0 28
wolffd@0 29 <p><CODE>conjgrad(f, x, options, gradf, p1, p2, ...)</CODE> allows
wolffd@0 30 additional arguments to be passed to <CODE>f()</CODE> and <CODE>gradf()</CODE>.
wolffd@0 31
wolffd@0 32 <p>The optional parameters have the following interpretations.
wolffd@0 33
wolffd@0 34 <p><CODE>options(1)</CODE> is set to 1 to display error values; also logs error
wolffd@0 35 values in the return argument <CODE>errlog</CODE>, and the points visited
wolffd@0 36 in the return argument <CODE>pointslog</CODE>. If <CODE>options(1)</CODE> is set to 0,
wolffd@0 37 then only warning messages are displayed. If <CODE>options(1)</CODE> is -1,
wolffd@0 38 then nothing is displayed.
wolffd@0 39
wolffd@0 40 <p><CODE>options(2)</CODE> is a measure of the absolute precision required for the value
wolffd@0 41 of <CODE>x</CODE> at the solution. If the absolute difference between
wolffd@0 42 the values of <CODE>x</CODE> between two successive steps is less than
wolffd@0 43 <CODE>options(2)</CODE>, then this condition is satisfied.
wolffd@0 44
wolffd@0 45 <p><CODE>options(3)</CODE> is a measure of the precision required of the objective
wolffd@0 46 function at the solution. If the absolute difference between the
wolffd@0 47 objective function values between two successive steps is less than
wolffd@0 48 <CODE>options(3)</CODE>, then this condition is satisfied.
wolffd@0 49 Both this and the previous condition must be
wolffd@0 50 satisfied for termination.
wolffd@0 51
wolffd@0 52 <p><CODE>options(9)</CODE> is set to 1 to check the user defined gradient function.
wolffd@0 53
wolffd@0 54 <p><CODE>options(10)</CODE> returns the total number of function evaluations (including
wolffd@0 55 those in any line searches).
wolffd@0 56
wolffd@0 57 <p><CODE>options(11)</CODE> returns the total number of gradient evaluations.
wolffd@0 58
wolffd@0 59 <p><CODE>options(14)</CODE> is the maximum number of iterations; default 100.
wolffd@0 60
wolffd@0 61 <p><CODE>options(15)</CODE> is the precision in parameter space of the line search;
wolffd@0 62 default <CODE>1e-4</CODE>.
wolffd@0 63
wolffd@0 64 <p><h2>
wolffd@0 65 Examples
wolffd@0 66 </h2>
wolffd@0 67 An example of
wolffd@0 68 the use of the additional arguments is the minimization of an error
wolffd@0 69 function for a neural network:
wolffd@0 70 <PRE>
wolffd@0 71
wolffd@0 72 w = quasinew('neterr', w, options, 'netgrad', net, x, t);
wolffd@0 73 </PRE>
wolffd@0 74
wolffd@0 75
wolffd@0 76 <p><h2>
wolffd@0 77 Algorithm
wolffd@0 78 </h2>
wolffd@0 79
wolffd@0 80 The conjugate gradients algorithm constructs search
wolffd@0 81 directions <CODE>di</CODE> that are conjugate: i.e. <CODE>di*H*d(i-1) = 0</CODE>,
wolffd@0 82 where <CODE>H</CODE> is the Hessian matrix. This means that minimising along
wolffd@0 83 <CODE>di</CODE> does not undo the effect of minimising along the previous
wolffd@0 84 direction. The Polak-Ribiere formula is used to calculate new search
wolffd@0 85 directions. The Hessian is not calculated, so there is only an
wolffd@0 86 <CODE>O(W)</CODE> storage requirement (where <CODE>W</CODE> is the number of
wolffd@0 87 parameters). However, relatively accurate line searches must be used
wolffd@0 88 (default is <CODE>1e-04</CODE>).
wolffd@0 89
wolffd@0 90 <p><h2>
wolffd@0 91 See Also
wolffd@0 92 </h2>
wolffd@0 93 <CODE><a href="graddesc.htm">graddesc</a></CODE>, <CODE><a href="linemin.htm">linemin</a></CODE>, <CODE><a href="minbrack.htm">minbrack</a></CODE>, <CODE><a href="quasinew.htm">quasinew</a></CODE>, <CODE><a href="scg.htm">scg</a></CODE><hr>
wolffd@0 94 <b>Pages:</b>
wolffd@0 95 <a href="index.htm">Index</a>
wolffd@0 96 <hr>
wolffd@0 97 <p>Copyright (c) Ian T Nabney (1996-9)
wolffd@0 98
wolffd@0 99
wolffd@0 100 </body>
wolffd@0 101 </html>