Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/graph/dfs_test.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 % Do the example in fig 23.4 p479 of Cormen, Leiserson and Rivest (1994) |
wolffd@0 | 2 |
wolffd@0 | 3 u = 1; v = 2; w = 3; x = 4; y = 5; z = 6; |
wolffd@0 | 4 n = 6; |
wolffd@0 | 5 dag=zeros(n,n); |
wolffd@0 | 6 dag(u,[v x])=1; |
wolffd@0 | 7 dag(v,y)=1; |
wolffd@0 | 8 dag(w,[y z])=1; |
wolffd@0 | 9 dag(x,v)=1; |
wolffd@0 | 10 dag(y,x)=1; |
wolffd@0 | 11 dag(z,z)=1; |
wolffd@0 | 12 |
wolffd@0 | 13 [d, pre, post, cycle, f, pred] = dfs(dag, [], 1); |
wolffd@0 | 14 assert(isequal(d, [1 2 9 4 3 10])) |
wolffd@0 | 15 assert(isequal(f, [8 7 12 5 6 11]) |
wolffd@0 | 16 assert(cycle) |
wolffd@0 | 17 |
wolffd@0 | 18 % Now give it an undirected cyclic graph |
wolffd@0 | 19 G = mk_2D_lattice(2,2,0); |
wolffd@0 | 20 % 1 - 3 |
wolffd@0 | 21 % | | |
wolffd@0 | 22 % 2 - 4 |
wolffd@0 | 23 [d, pre, post, cycle, f, pred] = dfs(G, [], 0); |
wolffd@0 | 24 % d = [1 2 4 3] |
wolffd@0 | 25 assert(cycle) |
wolffd@0 | 26 |
wolffd@0 | 27 % Now break the cycle |
wolffd@0 | 28 G(1,2)=0; G(2,1)=0; |
wolffd@0 | 29 [d, pre, post, cycle, f, pred] = dfs(G, [], 0); |
wolffd@0 | 30 assert(~cycle) |