wolffd@0
|
1 <HEAD>
|
wolffd@0
|
2 <TITLE>How to use the Bayes Net Toolbox</TITLE>
|
wolffd@0
|
3 </HEAD>
|
wolffd@0
|
4
|
wolffd@0
|
5 <BODY BGCOLOR="#FFFFFF">
|
wolffd@0
|
6 <!-- white background is better for the pictures and equations -->
|
wolffd@0
|
7
|
wolffd@0
|
8 <h1>How to use the Bayes Net Toolbox</h1>
|
wolffd@0
|
9
|
wolffd@0
|
10 This documentation was last updated on 29 October 2007.
|
wolffd@0
|
11 <br>
|
wolffd@0
|
12 Click
|
wolffd@0
|
13 <a href="http://bnt.insa-rouen.fr/">here</a>
|
wolffd@0
|
14 for a French version of this documentation (last updated in 2005).
|
wolffd@0
|
15 <p>
|
wolffd@0
|
16
|
wolffd@0
|
17 <ul>
|
wolffd@0
|
18 <li> <a href="install.html">Installation</a>
|
wolffd@0
|
19
|
wolffd@0
|
20 <li> <a href="#basics">Creating your first Bayes net</a>
|
wolffd@0
|
21 <ul>
|
wolffd@0
|
22 <li> <a href="#basics">Creating a model by hand</a>
|
wolffd@0
|
23 <li> <a href="#file">Loading a model from a file</a>
|
wolffd@0
|
24 <li> <a href="#GUI">Creating a model using a GUI</a>
|
wolffd@0
|
25 <li> <a href="graphviz.html">Graph visualization</a>
|
wolffd@0
|
26 </ul>
|
wolffd@0
|
27
|
wolffd@0
|
28 <li> <a href="#inference">Inference</a>
|
wolffd@0
|
29 <ul>
|
wolffd@0
|
30 <li> <a href="#marginal">Computing marginal distributions</a>
|
wolffd@0
|
31 <li> <a href="#joint">Computing joint distributions</a>
|
wolffd@0
|
32 <li> <a href="#soft">Soft/virtual evidence</a>
|
wolffd@0
|
33 <li> <a href="#mpe">Most probable explanation</a>
|
wolffd@0
|
34 </ul>
|
wolffd@0
|
35
|
wolffd@0
|
36 <li> <a href="#cpd">Conditional Probability Distributions</a>
|
wolffd@0
|
37 <ul>
|
wolffd@0
|
38 <li> <a href="#tabular">Tabular (multinomial) nodes</a>
|
wolffd@0
|
39 <li> <a href="#noisyor">Noisy-or nodes</a>
|
wolffd@0
|
40 <li> <a href="#deterministic">Other (noisy) deterministic nodes</a>
|
wolffd@0
|
41 <li> <a href="#softmax">Softmax (multinomial logit) nodes</a>
|
wolffd@0
|
42 <li> <a href="#mlp">Neural network nodes</a>
|
wolffd@0
|
43 <li> <a href="#root">Root nodes</a>
|
wolffd@0
|
44 <li> <a href="#gaussian">Gaussian nodes</a>
|
wolffd@0
|
45 <li> <a href="#glm">Generalized linear model nodes</a>
|
wolffd@0
|
46 <li> <a href="#dtree">Classification/regression tree nodes</a>
|
wolffd@0
|
47 <li> <a href="#nongauss">Other continuous distributions</a>
|
wolffd@0
|
48 <li> <a href="#cpd_summary">Summary of CPD types</a>
|
wolffd@0
|
49 </ul>
|
wolffd@0
|
50
|
wolffd@0
|
51 <li> <a href="#examples">Example models</a>
|
wolffd@0
|
52 <ul>
|
wolffd@0
|
53 <li> <a
|
wolffd@0
|
54 href="http://www.media.mit.edu/wearables/mithril/BNT/mixtureBNT.txt">
|
wolffd@0
|
55 Gaussian mixture models</a>
|
wolffd@0
|
56 <li> <a href="#pca">PCA, ICA, and all that</a>
|
wolffd@0
|
57 <li> <a href="#mixep">Mixtures of experts</a>
|
wolffd@0
|
58 <li> <a href="#hme">Hierarchical mixtures of experts</a>
|
wolffd@0
|
59 <li> <a href="#qmr">QMR</a>
|
wolffd@0
|
60 <li> <a href="#cg_model">Conditional Gaussian models</a>
|
wolffd@0
|
61 <li> <a href="#hybrid">Other hybrid models</a>
|
wolffd@0
|
62 </ul>
|
wolffd@0
|
63
|
wolffd@0
|
64 <li> <a href="#param_learning">Parameter learning</a>
|
wolffd@0
|
65 <ul>
|
wolffd@0
|
66 <li> <a href="#load_data">Loading data from a file</a>
|
wolffd@0
|
67 <li> <a href="#mle_complete">Maximum likelihood parameter estimation from complete data</a>
|
wolffd@0
|
68 <li> <a href="#prior">Parameter priors</a>
|
wolffd@0
|
69 <li> <a href="#bayes_learn">(Sequential) Bayesian parameter updating from complete data</a>
|
wolffd@0
|
70 <li> <a href="#em">Maximum likelihood parameter estimation with missing values (EM)</a>
|
wolffd@0
|
71 <li> <a href="#tying">Parameter tying</a>
|
wolffd@0
|
72 </ul>
|
wolffd@0
|
73
|
wolffd@0
|
74 <li> <a href="#structure_learning">Structure learning</a>
|
wolffd@0
|
75 <ul>
|
wolffd@0
|
76 <li> <a href="#enumerate">Exhaustive search</a>
|
wolffd@0
|
77 <li> <a href="#K2">K2</a>
|
wolffd@0
|
78 <li> <a href="#hill_climb">Hill-climbing</a>
|
wolffd@0
|
79 <li> <a href="#mcmc">MCMC</a>
|
wolffd@0
|
80 <li> <a href="#active">Active learning</a>
|
wolffd@0
|
81 <li> <a href="#struct_em">Structural EM</a>
|
wolffd@0
|
82 <li> <a href="#graphdraw">Visualizing the learned graph structure</a>
|
wolffd@0
|
83 <li> <a href="#constraint">Constraint-based methods</a>
|
wolffd@0
|
84 </ul>
|
wolffd@0
|
85
|
wolffd@0
|
86
|
wolffd@0
|
87 <li> <a href="#engines">Inference engines</a>
|
wolffd@0
|
88 <ul>
|
wolffd@0
|
89 <li> <a href="#jtree">Junction tree</a>
|
wolffd@0
|
90 <li> <a href="#varelim">Variable elimination</a>
|
wolffd@0
|
91 <li> <a href="#global">Global inference methods</a>
|
wolffd@0
|
92 <li> <a href="#quickscore">Quickscore</a>
|
wolffd@0
|
93 <li> <a href="#belprop">Belief propagation</a>
|
wolffd@0
|
94 <li> <a href="#sampling">Sampling (Monte Carlo)</a>
|
wolffd@0
|
95 <li> <a href="#engine_summary">Summary of inference engines</a>
|
wolffd@0
|
96 </ul>
|
wolffd@0
|
97
|
wolffd@0
|
98
|
wolffd@0
|
99 <li> <a href="#influence">Influence diagrams/ decision making</a>
|
wolffd@0
|
100
|
wolffd@0
|
101
|
wolffd@0
|
102 <li> <a href="usage_dbn.html">DBNs, HMMs, Kalman filters and all that</a>
|
wolffd@0
|
103 </ul>
|
wolffd@0
|
104
|
wolffd@0
|
105 </ul>
|
wolffd@0
|
106
|
wolffd@0
|
107
|
wolffd@0
|
108
|
wolffd@0
|
109 <h1><a name="basics">Creating your first Bayes net</h1>
|
wolffd@0
|
110
|
wolffd@0
|
111 To define a Bayes net, you must specify the graph structure and then
|
wolffd@0
|
112 the parameters. We look at each in turn, using a simple example
|
wolffd@0
|
113 (adapted from Russell and
|
wolffd@0
|
114 Norvig, "Artificial Intelligence: a Modern Approach", Prentice Hall,
|
wolffd@0
|
115 1995, p454).
|
wolffd@0
|
116
|
wolffd@0
|
117
|
wolffd@0
|
118 <h2>Graph structure</h2>
|
wolffd@0
|
119
|
wolffd@0
|
120
|
wolffd@0
|
121 Consider the following network.
|
wolffd@0
|
122
|
wolffd@0
|
123 <p>
|
wolffd@0
|
124 <center>
|
wolffd@0
|
125 <IMG SRC="Figures/sprinkler.gif">
|
wolffd@0
|
126 </center>
|
wolffd@0
|
127 <p>
|
wolffd@0
|
128
|
wolffd@0
|
129 <P>
|
wolffd@0
|
130 To specify this directed acyclic graph (dag), we create an adjacency matrix:
|
wolffd@0
|
131 <PRE>
|
wolffd@0
|
132 N = 4;
|
wolffd@0
|
133 dag = zeros(N,N);
|
wolffd@0
|
134 C = 1; S = 2; R = 3; W = 4;
|
wolffd@0
|
135 dag(C,[R S]) = 1;
|
wolffd@0
|
136 dag(R,W) = 1;
|
wolffd@0
|
137 dag(S,W)=1;
|
wolffd@0
|
138 </PRE>
|
wolffd@0
|
139 <P>
|
wolffd@0
|
140 We have numbered the nodes as follows:
|
wolffd@0
|
141 Cloudy = 1, Sprinkler = 2, Rain = 3, WetGrass = 4.
|
wolffd@0
|
142 <b>The nodes must always be numbered in topological order, i.e.,
|
wolffd@0
|
143 ancestors before descendants.</b>
|
wolffd@0
|
144 For a more complicated graph, this is a little inconvenient: we will
|
wolffd@0
|
145 see how to get around this <a href="usage_dbn.html#bat">below</a>.
|
wolffd@0
|
146 <p>
|
wolffd@0
|
147 In Matlab 6, you can use logical arrays instead of double arrays,
|
wolffd@0
|
148 which are 4 times smaller:
|
wolffd@0
|
149 <pre>
|
wolffd@0
|
150 dag = false(N,N);
|
wolffd@0
|
151 dag(C,[R S]) = true;
|
wolffd@0
|
152 ...
|
wolffd@0
|
153 </pre>
|
wolffd@0
|
154 However, <b>some graph functions (eg acyclic) do not work on
|
wolffd@0
|
155 logical arrays</b>!
|
wolffd@0
|
156 <p>
|
wolffd@0
|
157 You can visualize the resulting graph structure using
|
wolffd@0
|
158 the methods discussed <a href="#graphdraw">below</a>.
|
wolffd@0
|
159 For details on GUIs,
|
wolffd@0
|
160 click <a href="#GUI">here</a>.
|
wolffd@0
|
161
|
wolffd@0
|
162 <h2>Creating the Bayes net shell</h2>
|
wolffd@0
|
163
|
wolffd@0
|
164 In addition to specifying the graph structure,
|
wolffd@0
|
165 we must specify the size and type of each node.
|
wolffd@0
|
166 If a node is discrete, its size is the
|
wolffd@0
|
167 number of possible values
|
wolffd@0
|
168 each node can take on; if a node is continuous,
|
wolffd@0
|
169 it can be a vector, and its size is the length of this vector.
|
wolffd@0
|
170 In this case, we will assume all nodes are discrete and binary.
|
wolffd@0
|
171 <PRE>
|
wolffd@0
|
172 discrete_nodes = 1:N;
|
wolffd@0
|
173 node_sizes = 2*ones(1,N);
|
wolffd@0
|
174 </pre>
|
wolffd@0
|
175 If the nodes were not binary, you could type e.g.,
|
wolffd@0
|
176 <pre>
|
wolffd@0
|
177 node_sizes = [4 2 3 5];
|
wolffd@0
|
178 </pre>
|
wolffd@0
|
179 meaning that Cloudy has 4 possible values,
|
wolffd@0
|
180 Sprinkler has 2 possible values, etc.
|
wolffd@0
|
181 Note that these are cardinal values, not ordinal, i.e.,
|
wolffd@0
|
182 they are not ordered in any way, like 'low', 'medium', 'high'.
|
wolffd@0
|
183 <p>
|
wolffd@0
|
184 We are now ready to make the Bayes net:
|
wolffd@0
|
185 <pre>
|
wolffd@0
|
186 bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes);
|
wolffd@0
|
187 </PRE>
|
wolffd@0
|
188 By default, all nodes are assumed to be discrete, so we can also just
|
wolffd@0
|
189 write
|
wolffd@0
|
190 <pre>
|
wolffd@0
|
191 bnet = mk_bnet(dag, node_sizes);
|
wolffd@0
|
192 </PRE>
|
wolffd@0
|
193 You may also specify which nodes will be observed.
|
wolffd@0
|
194 If you don't know, or if this not fixed in advance,
|
wolffd@0
|
195 just use the empty list (the default).
|
wolffd@0
|
196 <pre>
|
wolffd@0
|
197 onodes = [];
|
wolffd@0
|
198 bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes, 'observed', onodes);
|
wolffd@0
|
199 </PRE>
|
wolffd@0
|
200 Note that optional arguments are specified using a name/value syntax.
|
wolffd@0
|
201 This is common for many BNT functions.
|
wolffd@0
|
202 In general, to find out more about a function (e.g., which optional
|
wolffd@0
|
203 arguments it takes), please see its
|
wolffd@0
|
204 documentation string by typing
|
wolffd@0
|
205 <pre>
|
wolffd@0
|
206 help mk_bnet
|
wolffd@0
|
207 </pre>
|
wolffd@0
|
208 See also other <a href="matlab_tips.html">useful Matlab tips</a>.
|
wolffd@0
|
209 <p>
|
wolffd@0
|
210 It is possible to associate names with nodes, as follows:
|
wolffd@0
|
211 <pre>
|
wolffd@0
|
212 bnet = mk_bnet(dag, node_sizes, 'names', {'cloudy','S','R','W'}, 'discrete', 1:4);
|
wolffd@0
|
213 </pre>
|
wolffd@0
|
214 You can then refer to a node by its name:
|
wolffd@0
|
215 <pre>
|
wolffd@0
|
216 C = bnet.names('cloudy'); % bnet.names is an associative array
|
wolffd@0
|
217 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]);
|
wolffd@0
|
218 </pre>
|
wolffd@0
|
219 This feature uses my own associative array class.
|
wolffd@0
|
220
|
wolffd@0
|
221
|
wolffd@0
|
222 <h2><a name="cpt">Parameters</h2>
|
wolffd@0
|
223
|
wolffd@0
|
224 A model consists of the graph structure and the parameters.
|
wolffd@0
|
225 The parameters are represented by CPD objects (CPD = Conditional
|
wolffd@0
|
226 Probability Distribution), which define the probability distribution
|
wolffd@0
|
227 of a node given its parents.
|
wolffd@0
|
228 (We will use the terms "node" and "random variable" interchangeably.)
|
wolffd@0
|
229 The simplest kind of CPD is a table (multi-dimensional array), which
|
wolffd@0
|
230 is suitable when all the nodes are discrete-valued. Note that the discrete
|
wolffd@0
|
231 values are not assumed to be ordered in any way; that is, they
|
wolffd@0
|
232 represent categorical quantities, like male and female, rather than
|
wolffd@0
|
233 ordinal quantities, like low, medium and high.
|
wolffd@0
|
234 (We will discuss CPDs in more detail <a href="#cpd">below</a>.)
|
wolffd@0
|
235 <p>
|
wolffd@0
|
236 Tabular CPDs, also called CPTs (conditional probability tables),
|
wolffd@0
|
237 are stored as multidimensional arrays, where the dimensions
|
wolffd@0
|
238 are arranged in the same order as the nodes, e.g., the CPT for node 4
|
wolffd@0
|
239 (WetGrass) is indexed by Sprinkler (2), Rain (3) and then WetGrass (4) itself.
|
wolffd@0
|
240 Hence the child is always the last dimension.
|
wolffd@0
|
241 If a node has no parents, its CPT is a column vector representing its
|
wolffd@0
|
242 prior.
|
wolffd@0
|
243 Note that in Matlab (unlike C), arrays are indexed
|
wolffd@0
|
244 from 1, and are layed out in memory such that the first index toggles
|
wolffd@0
|
245 fastest, e.g., the CPT for node 4 (WetGrass) is as follows
|
wolffd@0
|
246 <P>
|
wolffd@0
|
247 <P><IMG ALIGN=BOTTOM SRC="Figures/CPTgrass.gif"><P>
|
wolffd@0
|
248 <P>
|
wolffd@0
|
249 where we have used the convention that false==1, true==2.
|
wolffd@0
|
250 We can create this CPT in Matlab as follows
|
wolffd@0
|
251 <PRE>
|
wolffd@0
|
252 CPT = zeros(2,2,2);
|
wolffd@0
|
253 CPT(1,1,1) = 1.0;
|
wolffd@0
|
254 CPT(2,1,1) = 0.1;
|
wolffd@0
|
255 ...
|
wolffd@0
|
256 </PRE>
|
wolffd@0
|
257 Here is an easier way:
|
wolffd@0
|
258 <PRE>
|
wolffd@0
|
259 CPT = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], [2 2 2]);
|
wolffd@0
|
260 </PRE>
|
wolffd@0
|
261 In fact, we don't need to reshape the array, since the CPD constructor
|
wolffd@0
|
262 will do that for us. So we can just write
|
wolffd@0
|
263 <pre>
|
wolffd@0
|
264 bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [1 0.1 0.1 0.01 0 0.9 0.9 0.99]);
|
wolffd@0
|
265 </pre>
|
wolffd@0
|
266 The other nodes are created similarly (using the old syntax for
|
wolffd@0
|
267 optional parameters)
|
wolffd@0
|
268 <PRE>
|
wolffd@0
|
269 bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]);
|
wolffd@0
|
270 bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]);
|
wolffd@0
|
271 bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]);
|
wolffd@0
|
272 bnet.CPD{W} = tabular_CPD(bnet, W, [1 0.1 0.1 0.01 0 0.9 0.9 0.99]);
|
wolffd@0
|
273 </PRE>
|
wolffd@0
|
274
|
wolffd@0
|
275
|
wolffd@0
|
276 <h2><a name="rnd_cpt">Random Parameters</h2>
|
wolffd@0
|
277
|
wolffd@0
|
278 If we do not specify the CPT, random parameters will be
|
wolffd@0
|
279 created, i.e., each "row" of the CPT will be drawn from the uniform distribution.
|
wolffd@0
|
280 To ensure repeatable results, use
|
wolffd@0
|
281 <pre>
|
wolffd@0
|
282 rand('state', seed);
|
wolffd@0
|
283 randn('state', seed);
|
wolffd@0
|
284 </pre>
|
wolffd@0
|
285 To control the degree of randomness (entropy),
|
wolffd@0
|
286 you can sample each row of the CPT from a Dirichlet(p,p,...) distribution.
|
wolffd@0
|
287 If p << 1, this encourages "deterministic" CPTs (one entry near 1, the rest near 0).
|
wolffd@0
|
288 If p = 1, each entry is drawn from U[0,1].
|
wolffd@0
|
289 If p >> 1, the entries will all be near 1/k, where k is the arity of
|
wolffd@0
|
290 this node, i.e., each row will be nearly uniform.
|
wolffd@0
|
291 You can do this as follows, assuming this node
|
wolffd@0
|
292 is number i, and ns is the node_sizes.
|
wolffd@0
|
293 <pre>
|
wolffd@0
|
294 k = ns(i);
|
wolffd@0
|
295 ps = parents(dag, i);
|
wolffd@0
|
296 psz = prod(ns(ps));
|
wolffd@0
|
297 CPT = sample_dirichlet(p*ones(1,k), psz);
|
wolffd@0
|
298 bnet.CPD{i} = tabular_CPD(bnet, i, 'CPT', CPT);
|
wolffd@0
|
299 </pre>
|
wolffd@0
|
300
|
wolffd@0
|
301
|
wolffd@0
|
302 <h2><a name="file">Loading a network from a file</h2>
|
wolffd@0
|
303
|
wolffd@0
|
304 If you already have a Bayes net represented in the XML-based
|
wolffd@0
|
305 <a href="http://www.cs.cmu.edu/afs/cs/user/fgcozman/www/Research/InterchangeFormat/">
|
wolffd@0
|
306 Bayes Net Interchange Format (BNIF)</a> (e.g., downloaded from the
|
wolffd@0
|
307 <a
|
wolffd@0
|
308 href="http://www.cs.huji.ac.il/labs/compbio/Repository">
|
wolffd@0
|
309 Bayes Net repository</a>),
|
wolffd@0
|
310 you can convert it to BNT format using
|
wolffd@0
|
311 the
|
wolffd@0
|
312 <a href="http://www.digitas.harvard.edu/~ken/bif2bnt/">BIF-BNT Java
|
wolffd@0
|
313 program</a> written by Ken Shan.
|
wolffd@0
|
314 (This is not necessarily up-to-date.)
|
wolffd@0
|
315 <p>
|
wolffd@0
|
316 <b>It is currently not possible to save/load a BNT matlab object to
|
wolffd@0
|
317 file</b>, but this is easily fixed if you modify all the constructors
|
wolffd@0
|
318 for all the classes (see matlab documentation).
|
wolffd@0
|
319
|
wolffd@0
|
320 <h2><a name="GUI">Creating a model using a GUI</h2>
|
wolffd@0
|
321
|
wolffd@0
|
322 <ul>
|
wolffd@0
|
323 <li>Senthil Nachimuthu
|
wolffd@0
|
324 has started (Oct 07) an open source
|
wolffd@0
|
325 GUI for BNT called
|
wolffd@0
|
326 <a href="http://projeny.sourceforge.net">projeny</a>
|
wolffd@0
|
327 using Java. This is a successor to BNJ.
|
wolffd@0
|
328
|
wolffd@0
|
329 <li>
|
wolffd@0
|
330 Philippe LeRay has written (Sep 05)
|
wolffd@0
|
331 a
|
wolffd@0
|
332 <a href="http://banquiseasi.insa-rouen.fr/projects/bnt-editor/">
|
wolffd@0
|
333 BNT GUI</a> in matlab.
|
wolffd@0
|
334
|
wolffd@0
|
335 <li>
|
wolffd@0
|
336 <a
|
wolffd@0
|
337 href="http://www.dataonstage.com/BNT/PACKAGES/LinkStrength/index.html">
|
wolffd@0
|
338 LinkStrength</a>,
|
wolffd@0
|
339 a package by Imme Ebert-Uphoff for visualizing the strength of
|
wolffd@0
|
340 dependencies between nodes.
|
wolffd@0
|
341
|
wolffd@0
|
342 </ul>
|
wolffd@0
|
343
|
wolffd@0
|
344 <h2>Graph visualization</h2>
|
wolffd@0
|
345
|
wolffd@0
|
346 Click <a href="graphviz.html">here</a> for more information
|
wolffd@0
|
347 on graph visualization.
|
wolffd@0
|
348
|
wolffd@0
|
349
|
wolffd@0
|
350 <h1><a name="inference">Inference</h1>
|
wolffd@0
|
351
|
wolffd@0
|
352 Having created the BN, we can now use it for inference.
|
wolffd@0
|
353 There are many different algorithms for doing inference in Bayes nets,
|
wolffd@0
|
354 that make different tradeoffs between speed,
|
wolffd@0
|
355 complexity, generality, and accuracy.
|
wolffd@0
|
356 BNT therefore offers a variety of different inference
|
wolffd@0
|
357 "engines". We will discuss these
|
wolffd@0
|
358 in more detail <a href="#engines">below</a>.
|
wolffd@0
|
359 For now, we will use the junction tree
|
wolffd@0
|
360 engine, which is the mother of all exact inference algorithms.
|
wolffd@0
|
361 This can be created as follows.
|
wolffd@0
|
362 <pre>
|
wolffd@0
|
363 engine = jtree_inf_engine(bnet);
|
wolffd@0
|
364 </pre>
|
wolffd@0
|
365 The other engines have similar constructors, but might take
|
wolffd@0
|
366 additional, algorithm-specific parameters.
|
wolffd@0
|
367 All engines are used in the same way, once they have been created.
|
wolffd@0
|
368 We illustrate this in the following sections.
|
wolffd@0
|
369
|
wolffd@0
|
370
|
wolffd@0
|
371 <h2><a name="marginal">Computing marginal distributions</h2>
|
wolffd@0
|
372
|
wolffd@0
|
373 Suppose we want to compute the probability that the sprinker was on
|
wolffd@0
|
374 given that the grass is wet.
|
wolffd@0
|
375 The evidence consists of the fact that W=2. All the other nodes
|
wolffd@0
|
376 are hidden (unobserved). We can specify this as follows.
|
wolffd@0
|
377 <pre>
|
wolffd@0
|
378 evidence = cell(1,N);
|
wolffd@0
|
379 evidence{W} = 2;
|
wolffd@0
|
380 </pre>
|
wolffd@0
|
381 We use a 1D cell array instead of a vector to
|
wolffd@0
|
382 cope with the fact that nodes can be vectors of different lengths.
|
wolffd@0
|
383 In addition, the value [] can be used
|
wolffd@0
|
384 to denote 'no evidence', instead of having to specify the observation
|
wolffd@0
|
385 pattern as a separate argument.
|
wolffd@0
|
386 (Click <a href="cellarray.html">here</a> for a quick tutorial on cell
|
wolffd@0
|
387 arrays in matlab.)
|
wolffd@0
|
388 <p>
|
wolffd@0
|
389 We are now ready to add the evidence to the engine.
|
wolffd@0
|
390 <pre>
|
wolffd@0
|
391 [engine, loglik] = enter_evidence(engine, evidence);
|
wolffd@0
|
392 </pre>
|
wolffd@0
|
393 The behavior of this function is algorithm-specific, and is discussed
|
wolffd@0
|
394 in more detail <a href="#engines">below</a>.
|
wolffd@0
|
395 In the case of the jtree engine,
|
wolffd@0
|
396 enter_evidence implements a two-pass message-passing scheme.
|
wolffd@0
|
397 The first return argument contains the modified engine, which
|
wolffd@0
|
398 incorporates the evidence. The second return argument contains the
|
wolffd@0
|
399 log-likelihood of the evidence. (Not all engines are capable of
|
wolffd@0
|
400 computing the log-likelihood.)
|
wolffd@0
|
401 <p>
|
wolffd@0
|
402 Finally, we can compute p=P(S=2|W=2) as follows.
|
wolffd@0
|
403 <PRE>
|
wolffd@0
|
404 marg = marginal_nodes(engine, S);
|
wolffd@0
|
405 marg.T
|
wolffd@0
|
406 ans =
|
wolffd@0
|
407 0.57024
|
wolffd@0
|
408 0.42976
|
wolffd@0
|
409 p = marg.T(2);
|
wolffd@0
|
410 </PRE>
|
wolffd@0
|
411 We see that p = 0.4298.
|
wolffd@0
|
412 <p>
|
wolffd@0
|
413 Now let us add the evidence that it was raining, and see what
|
wolffd@0
|
414 difference it makes.
|
wolffd@0
|
415 <PRE>
|
wolffd@0
|
416 evidence{R} = 2;
|
wolffd@0
|
417 [engine, loglik] = enter_evidence(engine, evidence);
|
wolffd@0
|
418 marg = marginal_nodes(engine, S);
|
wolffd@0
|
419 p = marg.T(2);
|
wolffd@0
|
420 </PRE>
|
wolffd@0
|
421 We find that p = P(S=2|W=2,R=2) = 0.1945,
|
wolffd@0
|
422 which is lower than
|
wolffd@0
|
423 before, because the rain can ``explain away'' the
|
wolffd@0
|
424 fact that the grass is wet.
|
wolffd@0
|
425 <p>
|
wolffd@0
|
426 You can plot a marginal distribution over a discrete variable
|
wolffd@0
|
427 as a barchart using the built 'bar' function:
|
wolffd@0
|
428 <pre>
|
wolffd@0
|
429 bar(marg.T)
|
wolffd@0
|
430 </pre>
|
wolffd@0
|
431 This is what it looks like
|
wolffd@0
|
432
|
wolffd@0
|
433 <p>
|
wolffd@0
|
434 <center>
|
wolffd@0
|
435 <IMG SRC="Figures/sprinkler_bar.gif">
|
wolffd@0
|
436 </center>
|
wolffd@0
|
437 <p>
|
wolffd@0
|
438
|
wolffd@0
|
439 <h2><a name="observed">Observed nodes</h2>
|
wolffd@0
|
440
|
wolffd@0
|
441 What happens if we ask for the marginal on an observed node, e.g. P(W|W=2)?
|
wolffd@0
|
442 An observed discrete node effectively only has 1 value (the observed
|
wolffd@0
|
443 one) --- all other values would result in 0 probability.
|
wolffd@0
|
444 For efficiency, BNT treats observed (discrete) nodes as if they were
|
wolffd@0
|
445 set to 1, as we see below:
|
wolffd@0
|
446 <pre>
|
wolffd@0
|
447 evidence = cell(1,N);
|
wolffd@0
|
448 evidence{W} = 2;
|
wolffd@0
|
449 engine = enter_evidence(engine, evidence);
|
wolffd@0
|
450 m = marginal_nodes(engine, W);
|
wolffd@0
|
451 m.T
|
wolffd@0
|
452 ans =
|
wolffd@0
|
453 1
|
wolffd@0
|
454 </pre>
|
wolffd@0
|
455 This can get a little confusing, since we assigned W=2.
|
wolffd@0
|
456 So we can ask BNT to add the evidence back in by passing in an optional argument:
|
wolffd@0
|
457 <pre>
|
wolffd@0
|
458 m = marginal_nodes(engine, W, 1);
|
wolffd@0
|
459 m.T
|
wolffd@0
|
460 ans =
|
wolffd@0
|
461 0
|
wolffd@0
|
462 1
|
wolffd@0
|
463 </pre>
|
wolffd@0
|
464 This shows that P(W=1|W=2) = 0 and P(W=2|W=2) = 1.
|
wolffd@0
|
465
|
wolffd@0
|
466
|
wolffd@0
|
467
|
wolffd@0
|
468 <h2><a name="joint">Computing joint distributions</h2>
|
wolffd@0
|
469
|
wolffd@0
|
470 We can compute the joint probability on a set of nodes as in the
|
wolffd@0
|
471 following example.
|
wolffd@0
|
472 <pre>
|
wolffd@0
|
473 evidence = cell(1,N);
|
wolffd@0
|
474 [engine, ll] = enter_evidence(engine, evidence);
|
wolffd@0
|
475 m = marginal_nodes(engine, [S R W]);
|
wolffd@0
|
476 </pre>
|
wolffd@0
|
477 m is a structure. The 'T' field is a multi-dimensional array (in
|
wolffd@0
|
478 this case, 3-dimensional) that contains the joint probability
|
wolffd@0
|
479 distribution on the specified nodes.
|
wolffd@0
|
480 <pre>
|
wolffd@0
|
481 >> m.T
|
wolffd@0
|
482 ans(:,:,1) =
|
wolffd@0
|
483 0.2900 0.0410
|
wolffd@0
|
484 0.0210 0.0009
|
wolffd@0
|
485 ans(:,:,2) =
|
wolffd@0
|
486 0 0.3690
|
wolffd@0
|
487 0.1890 0.0891
|
wolffd@0
|
488 </pre>
|
wolffd@0
|
489 We see that P(S=1,R=1,W=2) = 0, since it is impossible for the grass
|
wolffd@0
|
490 to be wet if both the rain and sprinkler are off.
|
wolffd@0
|
491 <p>
|
wolffd@0
|
492 Let us now add some evidence to R.
|
wolffd@0
|
493 <pre>
|
wolffd@0
|
494 evidence{R} = 2;
|
wolffd@0
|
495 [engine, ll] = enter_evidence(engine, evidence);
|
wolffd@0
|
496 m = marginal_nodes(engine, [S R W])
|
wolffd@0
|
497 m =
|
wolffd@0
|
498 domain: [2 3 4]
|
wolffd@0
|
499 T: [2x1x2 double]
|
wolffd@0
|
500 >> m.T
|
wolffd@0
|
501 m.T
|
wolffd@0
|
502 ans(:,:,1) =
|
wolffd@0
|
503 0.0820
|
wolffd@0
|
504 0.0018
|
wolffd@0
|
505 ans(:,:,2) =
|
wolffd@0
|
506 0.7380
|
wolffd@0
|
507 0.1782
|
wolffd@0
|
508 </pre>
|
wolffd@0
|
509 The joint T(i,j,k) = P(S=i,R=j,W=k|evidence)
|
wolffd@0
|
510 should have T(i,1,k) = 0 for all i,k, since R=1 is incompatible
|
wolffd@0
|
511 with the evidence that R=2.
|
wolffd@0
|
512 Instead of creating large tables with many 0s, BNT sets the effective
|
wolffd@0
|
513 size of observed (discrete) nodes to 1, as explained above.
|
wolffd@0
|
514 This is why m.T has size 2x1x2.
|
wolffd@0
|
515 To get a 2x2x2 table, type
|
wolffd@0
|
516 <pre>
|
wolffd@0
|
517 m = marginal_nodes(engine, [S R W], 1)
|
wolffd@0
|
518 m =
|
wolffd@0
|
519 domain: [2 3 4]
|
wolffd@0
|
520 T: [2x2x2 double]
|
wolffd@0
|
521 >> m.T
|
wolffd@0
|
522 m.T
|
wolffd@0
|
523 ans(:,:,1) =
|
wolffd@0
|
524 0 0.082
|
wolffd@0
|
525 0 0.0018
|
wolffd@0
|
526 ans(:,:,2) =
|
wolffd@0
|
527 0 0.738
|
wolffd@0
|
528 0 0.1782
|
wolffd@0
|
529 </pre>
|
wolffd@0
|
530
|
wolffd@0
|
531 <p>
|
wolffd@0
|
532 Note: It is not always possible to compute the joint on arbitrary
|
wolffd@0
|
533 sets of nodes: it depends on which inference engine you use, as discussed
|
wolffd@0
|
534 in more detail <a href="#engines">below</a>.
|
wolffd@0
|
535
|
wolffd@0
|
536
|
wolffd@0
|
537 <h2><a name="soft">Soft/virtual evidence</h2>
|
wolffd@0
|
538
|
wolffd@0
|
539 Sometimes a node is not observed, but we have some distribution over
|
wolffd@0
|
540 its possible values; this is often called "soft" or "virtual"
|
wolffd@0
|
541 evidence.
|
wolffd@0
|
542 One can use this as follows
|
wolffd@0
|
543 <pre>
|
wolffd@0
|
544 [engine, loglik] = enter_evidence(engine, evidence, 'soft', soft_evidence);
|
wolffd@0
|
545 </pre>
|
wolffd@0
|
546 where soft_evidence{i} is either [] (if node i has no soft evidence)
|
wolffd@0
|
547 or is a vector representing the probability distribution over i's
|
wolffd@0
|
548 possible values.
|
wolffd@0
|
549 For example, if we don't know i's exact value, but we know its
|
wolffd@0
|
550 likelihood ratio is 60/40, we can write evidence{i} = [] and
|
wolffd@0
|
551 soft_evidence{i} = [0.6 0.4].
|
wolffd@0
|
552 <p>
|
wolffd@0
|
553 Currently only jtree_inf_engine supports this option.
|
wolffd@0
|
554 It assumes that all hidden nodes, and all nodes for
|
wolffd@0
|
555 which we have soft evidence, are discrete.
|
wolffd@0
|
556 For a longer example, see BNT/examples/static/softev1.m.
|
wolffd@0
|
557
|
wolffd@0
|
558
|
wolffd@0
|
559 <h2><a name="mpe">Most probable explanation</h2>
|
wolffd@0
|
560
|
wolffd@0
|
561 To compute the most probable explanation (MPE) of the evidence (i.e.,
|
wolffd@0
|
562 the most probable assignment, or a mode of the joint), use
|
wolffd@0
|
563 <pre>
|
wolffd@0
|
564 [mpe, ll] = calc_mpe(engine, evidence);
|
wolffd@0
|
565 </pre>
|
wolffd@0
|
566 mpe{i} is the most likely value of node i.
|
wolffd@0
|
567 This calls enter_evidence with the 'maximize' flag set to 1, which
|
wolffd@0
|
568 causes the engine to do max-product instead of sum-product.
|
wolffd@0
|
569 The resulting max-marginals are then thresholded.
|
wolffd@0
|
570 If there is more than one maximum probability assignment, we must take
|
wolffd@0
|
571 care to break ties in a consistent manner (thresholding the
|
wolffd@0
|
572 max-marginals may give the wrong result). To force this behavior,
|
wolffd@0
|
573 type
|
wolffd@0
|
574 <pre>
|
wolffd@0
|
575 [mpe, ll] = calc_mpe(engine, evidence, 1);
|
wolffd@0
|
576 </pre>
|
wolffd@0
|
577 Note that computing the MPE is someties called abductive reasoning.
|
wolffd@0
|
578
|
wolffd@0
|
579 <p>
|
wolffd@0
|
580 You can also use <tt>calc_mpe_bucket</tt> written by Ron Zohar,
|
wolffd@0
|
581 that does a forwards max-product pass, and then a backwards traceback
|
wolffd@0
|
582 pass, which is how Viterbi is traditionally implemented.
|
wolffd@0
|
583
|
wolffd@0
|
584
|
wolffd@0
|
585
|
wolffd@0
|
586 <h1><a name="cpd">Conditional Probability Distributions</h1>
|
wolffd@0
|
587
|
wolffd@0
|
588 A Conditional Probability Distributions (CPD)
|
wolffd@0
|
589 defines P(X(i) | X(Pa(i))), where X(i) is the i'th node, and X(Pa(i))
|
wolffd@0
|
590 are the parents of node i. There are many ways to represent this
|
wolffd@0
|
591 distribution, which depend in part on whether X(i) and X(Pa(i)) are
|
wolffd@0
|
592 discrete, continuous, or a combination.
|
wolffd@0
|
593 We will discuss various representations below.
|
wolffd@0
|
594
|
wolffd@0
|
595
|
wolffd@0
|
596 <h2><a name="tabular">Tabular nodes</h2>
|
wolffd@0
|
597
|
wolffd@0
|
598 If the CPD is represented as a table (i.e., if it is a multinomial
|
wolffd@0
|
599 distribution), it has a number of parameters that is exponential in
|
wolffd@0
|
600 the number of parents. See the example <a href="#cpt">above</a>.
|
wolffd@0
|
601
|
wolffd@0
|
602
|
wolffd@0
|
603 <h2><a name="noisyor">Noisy-or nodes</h2>
|
wolffd@0
|
604
|
wolffd@0
|
605 A noisy-OR node is like a regular logical OR gate except that
|
wolffd@0
|
606 sometimes the effects of parents that are on get inhibited.
|
wolffd@0
|
607 Let the prob. that parent i gets inhibited be q(i).
|
wolffd@0
|
608 Then a node, C, with 2 parents, A and B, has the following CPD, where
|
wolffd@0
|
609 we use F and T to represent off and on (1 and 2 in BNT).
|
wolffd@0
|
610 <pre>
|
wolffd@0
|
611 A B P(C=off) P(C=on)
|
wolffd@0
|
612 ---------------------------
|
wolffd@0
|
613 F F 1.0 0.0
|
wolffd@0
|
614 T F q(A) 1-q(A)
|
wolffd@0
|
615 F T q(B) 1-q(B)
|
wolffd@0
|
616 T T q(A)q(B) 1-q(A)q(B)
|
wolffd@0
|
617 </pre>
|
wolffd@0
|
618 Thus we see that the causes get inhibited independently.
|
wolffd@0
|
619 It is common to associate a "leak" node with a noisy-or CPD, which is
|
wolffd@0
|
620 like a parent that is always on. This can account for all other unmodelled
|
wolffd@0
|
621 causes which might turn the node on.
|
wolffd@0
|
622 <p>
|
wolffd@0
|
623 The noisy-or distribution is similar to the logistic distribution.
|
wolffd@0
|
624 To see this, let the nodes, S(i), have values in {0,1}, and let q(i,j)
|
wolffd@0
|
625 be the prob. that j inhibits i. Then
|
wolffd@0
|
626 <pre>
|
wolffd@0
|
627 Pr(S(i)=1 | parents(S(i))) = 1 - prod_{j} q(i,j)^S(j)
|
wolffd@0
|
628 </pre>
|
wolffd@0
|
629 Now define w(i,j) = -ln q(i,j) and rho(x) = 1-exp(-x). Then
|
wolffd@0
|
630 <pre>
|
wolffd@0
|
631 Pr(S(i)=1 | parents(S(i))) = rho(sum_j w(i,j) S(j))
|
wolffd@0
|
632 </pre>
|
wolffd@0
|
633 For a sigmoid node, we have
|
wolffd@0
|
634 <pre>
|
wolffd@0
|
635 Pr(S(i)=1 | parents(S(i))) = sigma(-sum_j w(i,j) S(j))
|
wolffd@0
|
636 </pre>
|
wolffd@0
|
637 where sigma(x) = 1/(1+exp(-x)). Hence they differ in the choice of
|
wolffd@0
|
638 the activation function (although both are monotonically increasing).
|
wolffd@0
|
639 In addition, in the case of a noisy-or, the weights are constrained to be
|
wolffd@0
|
640 positive, since they derive from probabilities q(i,j).
|
wolffd@0
|
641 In both cases, the number of parameters is <em>linear</em> in the
|
wolffd@0
|
642 number of parents, unlike the case of a multinomial distribution,
|
wolffd@0
|
643 where the number of parameters is exponential in the number of parents.
|
wolffd@0
|
644 We will see an example of noisy-OR nodes <a href="#qmr">below</a>.
|
wolffd@0
|
645
|
wolffd@0
|
646
|
wolffd@0
|
647 <h2><a name="deterministic">Other (noisy) deterministic nodes</h2>
|
wolffd@0
|
648
|
wolffd@0
|
649 Deterministic CPDs for discrete random variables can be created using
|
wolffd@0
|
650 the deterministic_CPD class. It is also possible to 'flip' the output
|
wolffd@0
|
651 of the function with some probability, to simulate noise.
|
wolffd@0
|
652 The boolean_CPD class is just a special case of a
|
wolffd@0
|
653 deterministic CPD, where the parents and child are all binary.
|
wolffd@0
|
654 <p>
|
wolffd@0
|
655 Both of these classes are just "syntactic sugar" for the tabular_CPD
|
wolffd@0
|
656 class.
|
wolffd@0
|
657
|
wolffd@0
|
658
|
wolffd@0
|
659
|
wolffd@0
|
660 <h2><a name="softmax">Softmax nodes</h2>
|
wolffd@0
|
661
|
wolffd@0
|
662 If we have a discrete node with a continuous parent,
|
wolffd@0
|
663 we can define its CPD using a softmax function
|
wolffd@0
|
664 (also known as the multinomial logit function).
|
wolffd@0
|
665 This acts like a soft thresholding operator, and is defined as follows:
|
wolffd@0
|
666 <pre>
|
wolffd@0
|
667 exp(w(:,i)'*x + b(i))
|
wolffd@0
|
668 Pr(Q=i | X=x) = -----------------------------
|
wolffd@0
|
669 sum_j exp(w(:,j)'*x + b(j))
|
wolffd@0
|
670
|
wolffd@0
|
671 </pre>
|
wolffd@0
|
672 The parameters of a softmax node, w(:,i) and b(i), i=1..|Q|, have the
|
wolffd@0
|
673 following interpretation: w(:,i)-w(:,j) is the normal vector to the
|
wolffd@0
|
674 decision boundary between classes i and j,
|
wolffd@0
|
675 and b(i)-b(j) is its offset (bias). For example, suppose
|
wolffd@0
|
676 X is a 2-vector, and Q is binary. Then
|
wolffd@0
|
677 <pre>
|
wolffd@0
|
678 w = [1 -1;
|
wolffd@0
|
679 0 0];
|
wolffd@0
|
680
|
wolffd@0
|
681 b = [0 0];
|
wolffd@0
|
682 </pre>
|
wolffd@0
|
683 means class 1 are points in the 2D plane with positive x coordinate,
|
wolffd@0
|
684 and class 2 are points in the 2D plane with negative x coordinate.
|
wolffd@0
|
685 If w has large magnitude, the decision boundary is sharp, otherwise it
|
wolffd@0
|
686 is soft.
|
wolffd@0
|
687 In the special case that Q is binary (0/1), the softmax function reduces to the logistic
|
wolffd@0
|
688 (sigmoid) function.
|
wolffd@0
|
689 <p>
|
wolffd@0
|
690 Fitting a softmax function can be done using the iteratively reweighted
|
wolffd@0
|
691 least squares (IRLS) algorithm.
|
wolffd@0
|
692 We use the implementation from
|
wolffd@0
|
693 <a href="http://www.ncrg.aston.ac.uk/netlab/">Netlab</a>.
|
wolffd@0
|
694 Note that since
|
wolffd@0
|
695 the softmax distribution is not in the exponential family, it does not
|
wolffd@0
|
696 have finite sufficient statistics, and hence we must store all the
|
wolffd@0
|
697 training data in uncompressed form.
|
wolffd@0
|
698 If this takes too much space, one should use online (stochastic) gradient
|
wolffd@0
|
699 descent (not implemented in BNT).
|
wolffd@0
|
700 <p>
|
wolffd@0
|
701 If a softmax node also has discrete parents,
|
wolffd@0
|
702 we use a different set of w/b parameters for each combination of
|
wolffd@0
|
703 parent values, as in the <a href="#gaussian">conditional linear
|
wolffd@0
|
704 Gaussian CPD</a>.
|
wolffd@0
|
705 This feature was implemented by Pierpaolo Brutti.
|
wolffd@0
|
706 He is currently extending it so that discrete parents can be treated
|
wolffd@0
|
707 as if they were continuous, by adding indicator variables to the X
|
wolffd@0
|
708 vector.
|
wolffd@0
|
709 <p>
|
wolffd@0
|
710 We will see an example of softmax nodes <a href="#mixexp">below</a>.
|
wolffd@0
|
711
|
wolffd@0
|
712
|
wolffd@0
|
713 <h2><a name="mlp">Neural network nodes</h2>
|
wolffd@0
|
714
|
wolffd@0
|
715 Pierpaolo Brutti has implemented the mlp_CPD class, which uses a multi layer perceptron
|
wolffd@0
|
716 to implement a mapping from continuous parents to discrete children,
|
wolffd@0
|
717 similar to the softmax function.
|
wolffd@0
|
718 (If there are also discrete parents, it creates a mixture of MLPs.)
|
wolffd@0
|
719 It uses code from <a
|
wolffd@0
|
720 href="http://www.ncrg.aston.ac.uk/netlab/">Netlab</a>.
|
wolffd@0
|
721 This is work in progress.
|
wolffd@0
|
722
|
wolffd@0
|
723 <h2><a name="root">Root nodes</h2>
|
wolffd@0
|
724
|
wolffd@0
|
725 A root node has no parents and no parameters; it can be used to model
|
wolffd@0
|
726 an observed, exogeneous input variable, i.e., one which is "outside"
|
wolffd@0
|
727 the model.
|
wolffd@0
|
728 This is useful for conditional density models.
|
wolffd@0
|
729 We will see an example of root nodes <a href="#mixexp">below</a>.
|
wolffd@0
|
730
|
wolffd@0
|
731
|
wolffd@0
|
732 <h2><a name="gaussian">Gaussian nodes</h2>
|
wolffd@0
|
733
|
wolffd@0
|
734 We now consider a distribution suitable for the continuous-valued nodes.
|
wolffd@0
|
735 Suppose the node is called Y, its continuous parents (if any) are
|
wolffd@0
|
736 called X, and its discrete parents (if any) are called Q.
|
wolffd@0
|
737 The distribution on Y is defined as follows:
|
wolffd@0
|
738 <pre>
|
wolffd@0
|
739 - no parents: Y ~ N(mu, Sigma)
|
wolffd@0
|
740 - cts parents : Y|X=x ~ N(mu + W x, Sigma)
|
wolffd@0
|
741 - discrete parents: Y|Q=i ~ N(mu(:,i), Sigma(:,:,i))
|
wolffd@0
|
742 - cts and discrete parents: Y|X=x,Q=i ~ N(mu(:,i) + W(:,:,i) * x, Sigma(:,:,i))
|
wolffd@0
|
743 </pre>
|
wolffd@0
|
744 where N(mu, Sigma) denotes a Normal distribution with mean mu and
|
wolffd@0
|
745 covariance Sigma. Let |X|, |Y| and |Q| denote the sizes of X, Y and Q
|
wolffd@0
|
746 respectively.
|
wolffd@0
|
747 If there are no discrete parents, |Q|=1; if there is
|
wolffd@0
|
748 more than one, then |Q| = a vector of the sizes of each discrete parent.
|
wolffd@0
|
749 If there are no continuous parents, |X|=0; if there is more than one,
|
wolffd@0
|
750 then |X| = the sum of their sizes.
|
wolffd@0
|
751 Then mu is a |Y|*|Q| vector, Sigma is a |Y|*|Y|*|Q| positive
|
wolffd@0
|
752 semi-definite matrix, and W is a |Y|*|X|*|Q| regression (weight)
|
wolffd@0
|
753 matrix.
|
wolffd@0
|
754 <p>
|
wolffd@0
|
755 We can create a Gaussian node with random parameters as follows.
|
wolffd@0
|
756 <pre>
|
wolffd@0
|
757 bnet.CPD{i} = gaussian_CPD(bnet, i);
|
wolffd@0
|
758 </pre>
|
wolffd@0
|
759 We can specify the value of one or more of the parameters as in the
|
wolffd@0
|
760 following example, in which |Y|=2, and |Q|=1.
|
wolffd@0
|
761 <pre>
|
wolffd@0
|
762 bnet.CPD{i} = gaussian_CPD(bnet, i, 'mean', [0; 0], 'weights', randn(Y,X), 'cov', eye(Y));
|
wolffd@0
|
763 </pre>
|
wolffd@0
|
764 <p>
|
wolffd@0
|
765 We will see an example of conditional linear Gaussian nodes <a
|
wolffd@0
|
766 href="#cg_model">below</a>.
|
wolffd@0
|
767 <p>
|
wolffd@0
|
768 <b>When learning Gaussians from data</b>, it is helpful to ensure the
|
wolffd@0
|
769 data has a small magnitde
|
wolffd@0
|
770 (see e.g., KPMstats/standardize) to prevent numerical problems.
|
wolffd@0
|
771 Unless you have a lot of data, it is also a very good idea to use
|
wolffd@0
|
772 diagonal instead of full covariance matrices.
|
wolffd@0
|
773 (BNT does not currently support spherical covariances, although it
|
wolffd@0
|
774 would be easy to add, since KPMstats/clg_Mstep supports this option;
|
wolffd@0
|
775 you would just need to modify gaussian_CPD/update_ess to accumulate
|
wolffd@0
|
776 weighted inner products.)
|
wolffd@0
|
777
|
wolffd@0
|
778
|
wolffd@0
|
779
|
wolffd@0
|
780 <h2><a name="nongauss">Other continuous distributions</h2>
|
wolffd@0
|
781
|
wolffd@0
|
782 Currently BNT does not support any CPDs for continuous nodes other
|
wolffd@0
|
783 than the Gaussian.
|
wolffd@0
|
784 However, you can use a mixture of Gaussians to
|
wolffd@0
|
785 approximate other continuous distributions. We will see some an example
|
wolffd@0
|
786 of this with the IFA model <a href="#pca">below</a>.
|
wolffd@0
|
787
|
wolffd@0
|
788
|
wolffd@0
|
789 <h2><a name="glm">Generalized linear model nodes</h2>
|
wolffd@0
|
790
|
wolffd@0
|
791 In the future, we may incorporate some of the functionality of
|
wolffd@0
|
792 <a href =
|
wolffd@0
|
793 "http://www.sci.usq.edu.au/staff/dunn/glmlab/glmlab.html">glmlab</a>
|
wolffd@0
|
794 into BNT.
|
wolffd@0
|
795
|
wolffd@0
|
796
|
wolffd@0
|
797 <h2><a name="dtree">Classification/regression tree nodes</h2>
|
wolffd@0
|
798
|
wolffd@0
|
799 We plan to add classification and regression trees to define CPDs for
|
wolffd@0
|
800 discrete and continuous nodes, respectively.
|
wolffd@0
|
801 Trees have many advantages: they are easy to interpret, they can do
|
wolffd@0
|
802 feature selection, they can
|
wolffd@0
|
803 handle discrete and continuous inputs, they do not make strong
|
wolffd@0
|
804 assumptions about the form of the distribution, the number of
|
wolffd@0
|
805 parameters can grow in a data-dependent way (i.e., they are
|
wolffd@0
|
806 semi-parametric), they can handle missing data, etc.
|
wolffd@0
|
807 However, they are not yet implemented.
|
wolffd@0
|
808 <!--
|
wolffd@0
|
809 Yimin Zhang is currently (Feb '02) implementing this.
|
wolffd@0
|
810 -->
|
wolffd@0
|
811
|
wolffd@0
|
812
|
wolffd@0
|
813 <h2><a name="cpd_summary">Summary of CPD types</h2>
|
wolffd@0
|
814
|
wolffd@0
|
815 We list all the different types of CPDs supported by BNT.
|
wolffd@0
|
816 For each CPD, we specify if the child and parents can be discrete (D) or
|
wolffd@0
|
817 continuous (C) (Binary (B) nodes are a special case).
|
wolffd@0
|
818 We also specify which methods each class supports.
|
wolffd@0
|
819 If a method is inherited, the name of the parent class is mentioned.
|
wolffd@0
|
820 If a parent class calls a child method, this is mentioned.
|
wolffd@0
|
821 <p>
|
wolffd@0
|
822 The <tt>CPD_to_CPT</tt> method converts a CPD to a table; this
|
wolffd@0
|
823 requires that the child and all parents are discrete.
|
wolffd@0
|
824 The CPT might be exponentially big...
|
wolffd@0
|
825 <tt>convert_to_table</tt> evaluates a CPD with evidence, and
|
wolffd@0
|
826 represents the the resulting potential as an array.
|
wolffd@0
|
827 This requires that the child is discrete, and any continuous parents
|
wolffd@0
|
828 are observed.
|
wolffd@0
|
829 <tt>convert_to_pot</tt> evaluates a CPD with evidence, and
|
wolffd@0
|
830 represents the resulting potential as a dpot, gpot, cgpot or upot, as
|
wolffd@0
|
831 requested. (d=discrete, g=Gaussian, cg = conditional Gaussian, u =
|
wolffd@0
|
832 utility).
|
wolffd@0
|
833
|
wolffd@0
|
834 <p>
|
wolffd@0
|
835 When we sample a node, all the parents are observed.
|
wolffd@0
|
836 When we compute the (log) probability of a node, all the parents and
|
wolffd@0
|
837 the child are observed.
|
wolffd@0
|
838 <p>
|
wolffd@0
|
839 We also specify if the parameters are learnable.
|
wolffd@0
|
840 For learning with EM, we require
|
wolffd@0
|
841 the methods <tt>reset_ess</tt>, <tt>update_ess</tt> and
|
wolffd@0
|
842 <tt>maximize_params</tt>.
|
wolffd@0
|
843 For learning from fully observed data, we require
|
wolffd@0
|
844 the method <tt>learn_params</tt>.
|
wolffd@0
|
845 By default, all classes inherit this from generic_CPD, which simply
|
wolffd@0
|
846 calls <tt>update_ess</tt> N times, once for each data case, followed
|
wolffd@0
|
847 by <tt>maximize_params</tt>, i.e., it is like EM, without the E step.
|
wolffd@0
|
848 Some classes implement a batch formula, which is quicker.
|
wolffd@0
|
849 <p>
|
wolffd@0
|
850 Bayesian learning means computing a posterior over the parameters
|
wolffd@0
|
851 given fully observed data.
|
wolffd@0
|
852 <p>
|
wolffd@0
|
853 Pearl means we implement the methods <tt>compute_pi</tt> and
|
wolffd@0
|
854 <tt>compute_lambda_msg</tt>, used by
|
wolffd@0
|
855 <tt>pearl_inf_engine</tt>, which runs on directed graphs.
|
wolffd@0
|
856 <tt>belprop_inf_engine</tt> only needs <tt>convert_to_pot</tt>.H
|
wolffd@0
|
857 The pearl methods can exploit special properties of the CPDs for
|
wolffd@0
|
858 computing the messages efficiently, whereas belprop does not.
|
wolffd@0
|
859 <p>
|
wolffd@0
|
860 The only method implemented by generic_CPD is <tt>adjustable_CPD</tt>,
|
wolffd@0
|
861 which is not shown, since it is not very interesting.
|
wolffd@0
|
862
|
wolffd@0
|
863
|
wolffd@0
|
864 <p>
|
wolffd@0
|
865
|
wolffd@0
|
866
|
wolffd@0
|
867 <table>
|
wolffd@0
|
868 <table border units = pixels><tr>
|
wolffd@0
|
869 <td align=center>Name
|
wolffd@0
|
870 <td align=center>Child
|
wolffd@0
|
871 <td align=center>Parents
|
wolffd@0
|
872 <td align=center>Comments
|
wolffd@0
|
873 <td align=center>CPD_to_CPT
|
wolffd@0
|
874 <td align=center>conv_to_table
|
wolffd@0
|
875 <td align=center>conv_to_pot
|
wolffd@0
|
876 <td align=center>sample
|
wolffd@0
|
877 <td align=center>prob
|
wolffd@0
|
878 <td align=center>learn
|
wolffd@0
|
879 <td align=center>Bayes
|
wolffd@0
|
880 <td align=center>Pearl
|
wolffd@0
|
881
|
wolffd@0
|
882
|
wolffd@0
|
883 <tr>
|
wolffd@0
|
884 <!-- Name--><td>
|
wolffd@0
|
885 <!-- Child--><td>
|
wolffd@0
|
886 <!-- Parents--><td>
|
wolffd@0
|
887 <!-- Comments--><td>
|
wolffd@0
|
888 <!-- CPD_to_CPT--><td>
|
wolffd@0
|
889 <!-- conv_to_table--><td>
|
wolffd@0
|
890 <!-- conv_to_pot--><td>
|
wolffd@0
|
891 <!-- sample--><td>
|
wolffd@0
|
892 <!-- prob--><td>
|
wolffd@0
|
893 <!-- learn--><td>
|
wolffd@0
|
894 <!-- Bayes--><td>
|
wolffd@0
|
895 <!-- Pearl--><td>
|
wolffd@0
|
896
|
wolffd@0
|
897 <tr>
|
wolffd@0
|
898 <!-- Name--><td>boolean
|
wolffd@0
|
899 <!-- Child--><td>B
|
wolffd@0
|
900 <!-- Parents--><td>B
|
wolffd@0
|
901 <!-- Comments--><td>Syntactic sugar for tabular
|
wolffd@0
|
902 <!-- CPD_to_CPT--><td>-
|
wolffd@0
|
903 <!-- conv_to_table--><td>-
|
wolffd@0
|
904 <!-- conv_to_pot--><td>-
|
wolffd@0
|
905 <!-- sample--><td>-
|
wolffd@0
|
906 <!-- prob--><td>-
|
wolffd@0
|
907 <!-- learn--><td>-
|
wolffd@0
|
908 <!-- Bayes--><td>-
|
wolffd@0
|
909 <!-- Pearl--><td>-
|
wolffd@0
|
910
|
wolffd@0
|
911 <tr>
|
wolffd@0
|
912 <!-- Name--><td>deterministic
|
wolffd@0
|
913 <!-- Child--><td>D
|
wolffd@0
|
914 <!-- Parents--><td>D
|
wolffd@0
|
915 <!-- Comments--><td>Syntactic sugar for tabular
|
wolffd@0
|
916 <!-- CPD_to_CPT--><td>-
|
wolffd@0
|
917 <!-- conv_to_table--><td>-
|
wolffd@0
|
918 <!-- conv_to_pot--><td>-
|
wolffd@0
|
919 <!-- sample--><td>-
|
wolffd@0
|
920 <!-- prob--><td>-
|
wolffd@0
|
921 <!-- learn--><td>-
|
wolffd@0
|
922 <!-- Bayes--><td>-
|
wolffd@0
|
923 <!-- Pearl--><td>-
|
wolffd@0
|
924
|
wolffd@0
|
925 <tr>
|
wolffd@0
|
926 <!-- Name--><td>Discrete
|
wolffd@0
|
927 <!-- Child--><td>D
|
wolffd@0
|
928 <!-- Parents--><td>C/D
|
wolffd@0
|
929 <!-- Comments--><td>Virtual class
|
wolffd@0
|
930 <!-- CPD_to_CPT--><td>N
|
wolffd@0
|
931 <!-- conv_to_table--><td>Calls CPD_to_CPT
|
wolffd@0
|
932 <!-- conv_to_pot--><td>Calls conv_to_table
|
wolffd@0
|
933 <!-- sample--><td>Calls conv_to_table
|
wolffd@0
|
934 <!-- prob--><td>Calls conv_to_table
|
wolffd@0
|
935 <!-- learn--><td>N
|
wolffd@0
|
936 <!-- Bayes--><td>N
|
wolffd@0
|
937 <!-- Pearl--><td>N
|
wolffd@0
|
938
|
wolffd@0
|
939 <tr>
|
wolffd@0
|
940 <!-- Name--><td>Gaussian
|
wolffd@0
|
941 <!-- Child--><td>C
|
wolffd@0
|
942 <!-- Parents--><td>C/D
|
wolffd@0
|
943 <!-- Comments--><td>-
|
wolffd@0
|
944 <!-- CPD_to_CPT--><td>N
|
wolffd@0
|
945 <!-- conv_to_table--><td>N
|
wolffd@0
|
946 <!-- conv_to_pot--><td>Y
|
wolffd@0
|
947 <!-- sample--><td>Y
|
wolffd@0
|
948 <!-- prob--><td>Y
|
wolffd@0
|
949 <!-- learn--><td>Y
|
wolffd@0
|
950 <!-- Bayes--><td>N
|
wolffd@0
|
951 <!-- Pearl--><td>N
|
wolffd@0
|
952
|
wolffd@0
|
953 <tr>
|
wolffd@0
|
954 <!-- Name--><td>gmux
|
wolffd@0
|
955 <!-- Child--><td>C
|
wolffd@0
|
956 <!-- Parents--><td>C/D
|
wolffd@0
|
957 <!-- Comments--><td>multiplexer
|
wolffd@0
|
958 <!-- CPD_to_CPT--><td>N
|
wolffd@0
|
959 <!-- conv_to_table--><td>N
|
wolffd@0
|
960 <!-- conv_to_pot--><td>Y
|
wolffd@0
|
961 <!-- sample--><td>N
|
wolffd@0
|
962 <!-- prob--><td>N
|
wolffd@0
|
963 <!-- learn--><td>N
|
wolffd@0
|
964 <!-- Bayes--><td>N
|
wolffd@0
|
965 <!-- Pearl--><td>Y
|
wolffd@0
|
966
|
wolffd@0
|
967
|
wolffd@0
|
968 <tr>
|
wolffd@0
|
969 <!-- Name--><td>MLP
|
wolffd@0
|
970 <!-- Child--><td>D
|
wolffd@0
|
971 <!-- Parents--><td>C/D
|
wolffd@0
|
972 <!-- Comments--><td>multi layer perceptron
|
wolffd@0
|
973 <!-- CPD_to_CPT--><td>N
|
wolffd@0
|
974 <!-- conv_to_table--><td>Y
|
wolffd@0
|
975 <!-- conv_to_pot--><td>Inherits from discrete
|
wolffd@0
|
976 <!-- sample--><td>Inherits from discrete
|
wolffd@0
|
977 <!-- prob--><td>Inherits from discrete
|
wolffd@0
|
978 <!-- learn--><td>Y
|
wolffd@0
|
979 <!-- Bayes--><td>N
|
wolffd@0
|
980 <!-- Pearl--><td>N
|
wolffd@0
|
981
|
wolffd@0
|
982
|
wolffd@0
|
983 <tr>
|
wolffd@0
|
984 <!-- Name--><td>noisy-or
|
wolffd@0
|
985 <!-- Child--><td>B
|
wolffd@0
|
986 <!-- Parents--><td>B
|
wolffd@0
|
987 <!-- Comments--><td>-
|
wolffd@0
|
988 <!-- CPD_to_CPT--><td>Y
|
wolffd@0
|
989 <!-- conv_to_table--><td>Inherits from discrete
|
wolffd@0
|
990 <!-- conv_to_pot--><td>Inherits from discrete
|
wolffd@0
|
991 <!-- sample--><td>Inherits from discrete
|
wolffd@0
|
992 <!-- prob--><td>Inherits from discrete
|
wolffd@0
|
993 <!-- learn--><td>N
|
wolffd@0
|
994 <!-- Bayes--><td>N
|
wolffd@0
|
995 <!-- Pearl--><td>Y
|
wolffd@0
|
996
|
wolffd@0
|
997
|
wolffd@0
|
998 <tr>
|
wolffd@0
|
999 <!-- Name--><td>root
|
wolffd@0
|
1000 <!-- Child--><td>C/D
|
wolffd@0
|
1001 <!-- Parents--><td>none
|
wolffd@0
|
1002 <!-- Comments--><td>no params
|
wolffd@0
|
1003 <!-- CPD_to_CPT--><td>N
|
wolffd@0
|
1004 <!-- conv_to_table--><td>N
|
wolffd@0
|
1005 <!-- conv_to_pot--><td>Y
|
wolffd@0
|
1006 <!-- sample--><td>Y
|
wolffd@0
|
1007 <!-- prob--><td>Y
|
wolffd@0
|
1008 <!-- learn--><td>N
|
wolffd@0
|
1009 <!-- Bayes--><td>N
|
wolffd@0
|
1010 <!-- Pearl--><td>N
|
wolffd@0
|
1011
|
wolffd@0
|
1012
|
wolffd@0
|
1013 <tr>
|
wolffd@0
|
1014 <!-- Name--><td>softmax
|
wolffd@0
|
1015 <!-- Child--><td>D
|
wolffd@0
|
1016 <!-- Parents--><td>C/D
|
wolffd@0
|
1017 <!-- Comments--><td>-
|
wolffd@0
|
1018 <!-- CPD_to_CPT--><td>N
|
wolffd@0
|
1019 <!-- conv_to_table--><td>Y
|
wolffd@0
|
1020 <!-- conv_to_pot--><td>Inherits from discrete
|
wolffd@0
|
1021 <!-- sample--><td>Inherits from discrete
|
wolffd@0
|
1022 <!-- prob--><td>Inherits from discrete
|
wolffd@0
|
1023 <!-- learn--><td>Y
|
wolffd@0
|
1024 <!-- Bayes--><td>N
|
wolffd@0
|
1025 <!-- Pearl--><td>N
|
wolffd@0
|
1026
|
wolffd@0
|
1027
|
wolffd@0
|
1028 <tr>
|
wolffd@0
|
1029 <!-- Name--><td>generic
|
wolffd@0
|
1030 <!-- Child--><td>C/D
|
wolffd@0
|
1031 <!-- Parents--><td>C/D
|
wolffd@0
|
1032 <!-- Comments--><td>Virtual class
|
wolffd@0
|
1033 <!-- CPD_to_CPT--><td>N
|
wolffd@0
|
1034 <!-- conv_to_table--><td>N
|
wolffd@0
|
1035 <!-- conv_to_pot--><td>N
|
wolffd@0
|
1036 <!-- sample--><td>N
|
wolffd@0
|
1037 <!-- prob--><td>N
|
wolffd@0
|
1038 <!-- learn--><td>N
|
wolffd@0
|
1039 <!-- Bayes--><td>N
|
wolffd@0
|
1040 <!-- Pearl--><td>N
|
wolffd@0
|
1041
|
wolffd@0
|
1042
|
wolffd@0
|
1043 <tr>
|
wolffd@0
|
1044 <!-- Name--><td>Tabular
|
wolffd@0
|
1045 <!-- Child--><td>D
|
wolffd@0
|
1046 <!-- Parents--><td>D
|
wolffd@0
|
1047 <!-- Comments--><td>-
|
wolffd@0
|
1048 <!-- CPD_to_CPT--><td>Y
|
wolffd@0
|
1049 <!-- conv_to_table--><td>Inherits from discrete
|
wolffd@0
|
1050 <!-- conv_to_pot--><td>Inherits from discrete
|
wolffd@0
|
1051 <!-- sample--><td>Inherits from discrete
|
wolffd@0
|
1052 <!-- prob--><td>Inherits from discrete
|
wolffd@0
|
1053 <!-- learn--><td>Y
|
wolffd@0
|
1054 <!-- Bayes--><td>Y
|
wolffd@0
|
1055 <!-- Pearl--><td>Y
|
wolffd@0
|
1056
|
wolffd@0
|
1057 </table>
|
wolffd@0
|
1058
|
wolffd@0
|
1059
|
wolffd@0
|
1060
|
wolffd@0
|
1061 <h1><a name="examples">Example models</h1>
|
wolffd@0
|
1062
|
wolffd@0
|
1063
|
wolffd@0
|
1064 <h2>Gaussian mixture models</h2>
|
wolffd@0
|
1065
|
wolffd@0
|
1066 Richard W. DeVaul has made a detailed tutorial on how to fit mixtures
|
wolffd@0
|
1067 of Gaussians using BNT. Available
|
wolffd@0
|
1068 <a href="http://www.media.mit.edu/wearables/mithril/BNT/mixtureBNT.txt">here</a>.
|
wolffd@0
|
1069
|
wolffd@0
|
1070
|
wolffd@0
|
1071 <h2><a name="pca">PCA, ICA, and all that </h2>
|
wolffd@0
|
1072
|
wolffd@0
|
1073 In Figure (a) below, we show how Factor Analysis can be thought of as a
|
wolffd@0
|
1074 graphical model. Here, X has an N(0,I) prior, and
|
wolffd@0
|
1075 Y|X=x ~ N(mu + Wx, Psi),
|
wolffd@0
|
1076 where Psi is diagonal and W is called the "factor loading matrix".
|
wolffd@0
|
1077 Since the noise on both X and Y is diagonal, the components of these
|
wolffd@0
|
1078 vectors are uncorrelated, and hence can be represented as individual
|
wolffd@0
|
1079 scalar nodes, as we show in (b).
|
wolffd@0
|
1080 (This is useful if parts of the observations on the Y vector are occasionally missing.)
|
wolffd@0
|
1081 We usually take k=|X| << |Y|=D, so the model tries to explain
|
wolffd@0
|
1082 many observations using a low-dimensional subspace.
|
wolffd@0
|
1083
|
wolffd@0
|
1084
|
wolffd@0
|
1085 <center>
|
wolffd@0
|
1086 <table>
|
wolffd@0
|
1087 <tr>
|
wolffd@0
|
1088 <td><img src="Figures/fa.gif">
|
wolffd@0
|
1089 <td><img src="Figures/fa_scalar.gif">
|
wolffd@0
|
1090 <td><img src="Figures/mfa.gif">
|
wolffd@0
|
1091 <td><img src="Figures/ifa.gif">
|
wolffd@0
|
1092 <tr>
|
wolffd@0
|
1093 <td align=center> (a)
|
wolffd@0
|
1094 <td align=center> (b)
|
wolffd@0
|
1095 <td align=center> (c)
|
wolffd@0
|
1096 <td align=center> (d)
|
wolffd@0
|
1097 </table>
|
wolffd@0
|
1098 </center>
|
wolffd@0
|
1099
|
wolffd@0
|
1100 <p>
|
wolffd@0
|
1101 We can create this model in BNT as follows.
|
wolffd@0
|
1102 <pre>
|
wolffd@0
|
1103 ns = [k D];
|
wolffd@0
|
1104 dag = zeros(2,2);
|
wolffd@0
|
1105 dag(1,2) = 1;
|
wolffd@0
|
1106 bnet = mk_bnet(dag, ns, 'discrete', []);
|
wolffd@0
|
1107 bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', zeros(k,1), 'cov', eye(k), ...
|
wolffd@0
|
1108 'cov_type', 'diag', 'clamp_mean', 1, 'clamp_cov', 1);
|
wolffd@0
|
1109 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(D,1), 'cov', diag(Psi0), 'weights', W0, ...
|
wolffd@0
|
1110 'cov_type', 'diag', 'clamp_mean', 1);
|
wolffd@0
|
1111 </pre>
|
wolffd@0
|
1112
|
wolffd@0
|
1113 The root node is clamped to the N(0,I) distribution, so that we will
|
wolffd@0
|
1114 not update these parameters during learning.
|
wolffd@0
|
1115 The mean of the leaf node is clamped to 0,
|
wolffd@0
|
1116 since we assume the data has been centered (had its mean subtracted
|
wolffd@0
|
1117 off); this is just for simplicity.
|
wolffd@0
|
1118 Finally, the covariance of the leaf node is constrained to be
|
wolffd@0
|
1119 diagonal. W0 and Psi0 are the initial parameter guesses.
|
wolffd@0
|
1120
|
wolffd@0
|
1121 <p>
|
wolffd@0
|
1122 We can fit this model (i.e., estimate its parameters in a maximum
|
wolffd@0
|
1123 likelihood (ML) sense) using EM, as we
|
wolffd@0
|
1124 explain <a href="#em">below</a>.
|
wolffd@0
|
1125 Not surprisingly, the ML estimates for mu and Psi turn out to be
|
wolffd@0
|
1126 identical to the
|
wolffd@0
|
1127 sample mean and variance, which can be computed directly as
|
wolffd@0
|
1128 <pre>
|
wolffd@0
|
1129 mu_ML = mean(data);
|
wolffd@0
|
1130 Psi_ML = diag(cov(data));
|
wolffd@0
|
1131 </pre>
|
wolffd@0
|
1132 Note that W can only be identified up to a rotation matrix, because of
|
wolffd@0
|
1133 the spherical symmetry of the source.
|
wolffd@0
|
1134
|
wolffd@0
|
1135 <p>
|
wolffd@0
|
1136 If we restrict Psi to be spherical, i.e., Psi = sigma*I,
|
wolffd@0
|
1137 there is a closed-form solution for W as well,
|
wolffd@0
|
1138 i.e., we do not need to use EM.
|
wolffd@0
|
1139 In particular, W contains the first |X| eigenvectors of the sample covariance
|
wolffd@0
|
1140 matrix, with scalings determined by the eigenvalues and sigma.
|
wolffd@0
|
1141 Classical PCA can be obtained by taking the sigma->0 limit.
|
wolffd@0
|
1142 For details, see
|
wolffd@0
|
1143
|
wolffd@0
|
1144 <ul>
|
wolffd@0
|
1145 <li> <a href="ftp://hope.caltech.edu/pub/roweis/Empca/empca.ps">
|
wolffd@0
|
1146 "EM algorithms for PCA and SPCA"</a>, Sam Roweis, NIPS 97.
|
wolffd@0
|
1147 (<a href="ftp://hope.caltech.edu/pub/roweis/Code/empca.tar.gz">
|
wolffd@0
|
1148 Matlab software</a>)
|
wolffd@0
|
1149
|
wolffd@0
|
1150 <p>
|
wolffd@0
|
1151 <li>
|
wolffd@0
|
1152 <a
|
wolffd@0
|
1153 href=http://neural-server.aston.ac.uk/cgi-bin/tr_avail.pl?trnumber=NCRG/97/003>
|
wolffd@0
|
1154 "Mixtures of probabilistic principal component analyzers"</a>,
|
wolffd@0
|
1155 Tipping and Bishop, Neural Computation 11(2):443--482, 1999.
|
wolffd@0
|
1156 </ul>
|
wolffd@0
|
1157
|
wolffd@0
|
1158 <p>
|
wolffd@0
|
1159 By adding a hidden discrete variable, we can create mixtures of FA
|
wolffd@0
|
1160 models, as shown in (c).
|
wolffd@0
|
1161 Now we can explain the data using a set of subspaces.
|
wolffd@0
|
1162 We can create this model in BNT as follows.
|
wolffd@0
|
1163 <pre>
|
wolffd@0
|
1164 ns = [M k D];
|
wolffd@0
|
1165 dag = zeros(3);
|
wolffd@0
|
1166 dag(1,3) = 1;
|
wolffd@0
|
1167 dag(2,3) = 1;
|
wolffd@0
|
1168 bnet = mk_bnet(dag, ns, 'discrete', 1);
|
wolffd@0
|
1169 bnet.CPD{1} = tabular_CPD(bnet, 1, Pi0);
|
wolffd@0
|
1170 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(k, 1), 'cov', eye(k), 'cov_type', 'diag', ...
|
wolffd@0
|
1171 'clamp_mean', 1, 'clamp_cov', 1);
|
wolffd@0
|
1172 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', Mu0', 'cov', repmat(diag(Psi0), [1 1 M]), ...
|
wolffd@0
|
1173 'weights', W0, 'cov_type', 'diag', 'tied_cov', 1);
|
wolffd@0
|
1174 </pre>
|
wolffd@0
|
1175 Notice how the covariance matrix for Y is the same for all values of
|
wolffd@0
|
1176 Q; that is, the noise level in each sub-space is assumed the same.
|
wolffd@0
|
1177 However, we allow the offset, mu, to vary.
|
wolffd@0
|
1178 For details, see
|
wolffd@0
|
1179 <ul>
|
wolffd@0
|
1180
|
wolffd@0
|
1181 <LI>
|
wolffd@0
|
1182 <a HREF="ftp://ftp.cs.toronto.edu/pub/zoubin/tr-96-1.ps.gz"> The EM
|
wolffd@0
|
1183 Algorithm for Mixtures of Factor Analyzers </A>,
|
wolffd@0
|
1184 Ghahramani, Z. and Hinton, G.E. (1996),
|
wolffd@0
|
1185 University of Toronto
|
wolffd@0
|
1186 Technical Report CRG-TR-96-1.
|
wolffd@0
|
1187 (<A HREF="ftp://ftp.cs.toronto.edu/pub/zoubin/mfa.tar.gz">Matlab software</A>)
|
wolffd@0
|
1188
|
wolffd@0
|
1189 <p>
|
wolffd@0
|
1190 <li>
|
wolffd@0
|
1191 <a
|
wolffd@0
|
1192 href=http://neural-server.aston.ac.uk/cgi-bin/tr_avail.pl?trnumber=NCRG/97/003>
|
wolffd@0
|
1193 "Mixtures of probabilistic principal component analyzers"</a>,
|
wolffd@0
|
1194 Tipping and Bishop, Neural Computation 11(2):443--482, 1999.
|
wolffd@0
|
1195 </ul>
|
wolffd@0
|
1196
|
wolffd@0
|
1197 <p>
|
wolffd@0
|
1198 I have included Zoubin's specialized MFA code (with his permission)
|
wolffd@0
|
1199 with the toolbox, so you can check that BNT gives the same results:
|
wolffd@0
|
1200 see 'BNT/examples/static/mfa1.m'.
|
wolffd@0
|
1201
|
wolffd@0
|
1202 <p>
|
wolffd@0
|
1203 Independent Factor Analysis (IFA) generalizes FA by allowing a
|
wolffd@0
|
1204 non-Gaussian prior on each component of X.
|
wolffd@0
|
1205 (Note that we can approximate a non-Gaussian prior using a mixture of
|
wolffd@0
|
1206 Gaussians.)
|
wolffd@0
|
1207 This means that the likelihood function is no longer rotationally
|
wolffd@0
|
1208 invariant, so we can uniquely identify W and the hidden
|
wolffd@0
|
1209 sources X.
|
wolffd@0
|
1210 IFA also allows a non-diagonal Psi (i.e. correlations between the components of Y).
|
wolffd@0
|
1211 We recover classical Independent Components Analysis (ICA)
|
wolffd@0
|
1212 in the Psi -> 0 limit, and by assuming that |X|=|Y|, so that the
|
wolffd@0
|
1213 weight matrix W is square and invertible.
|
wolffd@0
|
1214 For details, see
|
wolffd@0
|
1215 <ul>
|
wolffd@0
|
1216 <li>
|
wolffd@0
|
1217 <a href="http://www.gatsby.ucl.ac.uk/~hagai/ifa.ps">Independent Factor
|
wolffd@0
|
1218 Analysis</a>, H. Attias, Neural Computation 11: 803--851, 1998.
|
wolffd@0
|
1219 </ul>
|
wolffd@0
|
1220
|
wolffd@0
|
1221
|
wolffd@0
|
1222
|
wolffd@0
|
1223 <h2><a name="mixexp">Mixtures of experts</h2>
|
wolffd@0
|
1224
|
wolffd@0
|
1225 As an example of the use of the softmax function,
|
wolffd@0
|
1226 we introduce the Mixture of Experts model.
|
wolffd@0
|
1227 <!--
|
wolffd@0
|
1228 We also show
|
wolffd@0
|
1229 the Hierarchical Mixture of Experts model, where the hierarchy has two
|
wolffd@0
|
1230 levels.
|
wolffd@0
|
1231 (This is essentially a probabilistic decision tree of height two.)
|
wolffd@0
|
1232 -->
|
wolffd@0
|
1233 As before,
|
wolffd@0
|
1234 circles denote continuous-valued nodes,
|
wolffd@0
|
1235 squares denote discrete nodes, clear
|
wolffd@0
|
1236 means hidden, and shaded means observed.
|
wolffd@0
|
1237 <p>
|
wolffd@0
|
1238 <center>
|
wolffd@0
|
1239 <table>
|
wolffd@0
|
1240 <tr>
|
wolffd@0
|
1241 <td><img src="Figures/mixexp.gif">
|
wolffd@0
|
1242 <!--
|
wolffd@0
|
1243 <td><img src="Figures/hme.gif">
|
wolffd@0
|
1244 -->
|
wolffd@0
|
1245 </table>
|
wolffd@0
|
1246 </center>
|
wolffd@0
|
1247 <p>
|
wolffd@0
|
1248 X is the observed
|
wolffd@0
|
1249 input, Y is the output, and
|
wolffd@0
|
1250 the Q nodes are hidden "gating" nodes, which select the appropriate
|
wolffd@0
|
1251 set of parameters for Y. During training, Y is assumed observed,
|
wolffd@0
|
1252 but for testing, the goal is to predict Y given X.
|
wolffd@0
|
1253 Note that this is a <em>conditional</em> density model, so we don't
|
wolffd@0
|
1254 associate any parameters with X.
|
wolffd@0
|
1255 Hence X's CPD will be a root CPD, which is a way of modelling
|
wolffd@0
|
1256 exogenous nodes.
|
wolffd@0
|
1257 If the output is a continuous-valued quantity,
|
wolffd@0
|
1258 we assume the "experts" are linear-regression units,
|
wolffd@0
|
1259 and set Y's CPD to linear-Gaussian.
|
wolffd@0
|
1260 If the output is discrete, we set Y's CPD to a softmax function.
|
wolffd@0
|
1261 The Q CPDs will always be softmax functions.
|
wolffd@0
|
1262
|
wolffd@0
|
1263 <p>
|
wolffd@0
|
1264 As a concrete example, consider the mixture of experts model where X and Y are
|
wolffd@0
|
1265 scalars, and Q is binary.
|
wolffd@0
|
1266 This is just piecewise linear regression, where
|
wolffd@0
|
1267 we have two line segments, i.e.,
|
wolffd@0
|
1268 <P>
|
wolffd@0
|
1269 <IMG ALIGN=BOTTOM SRC="Eqns/lin_reg_eqn.gif">
|
wolffd@0
|
1270 <P>
|
wolffd@0
|
1271 We can create this model with random parameters as follows.
|
wolffd@0
|
1272 (This code is bundled in BNT/examples/static/mixexp2.m.)
|
wolffd@0
|
1273 <PRE>
|
wolffd@0
|
1274 X = 1;
|
wolffd@0
|
1275 Q = 2;
|
wolffd@0
|
1276 Y = 3;
|
wolffd@0
|
1277 dag = zeros(3,3);
|
wolffd@0
|
1278 dag(X,[Q Y]) = 1
|
wolffd@0
|
1279 dag(Q,Y) = 1;
|
wolffd@0
|
1280 ns = [1 2 1]; % make X and Y scalars, and have 2 experts
|
wolffd@0
|
1281 onodes = [1 3];
|
wolffd@0
|
1282 bnet = mk_bnet(dag, ns, 'discrete', 2, 'observed', onodes);
|
wolffd@0
|
1283
|
wolffd@0
|
1284 rand('state', 0);
|
wolffd@0
|
1285 randn('state', 0);
|
wolffd@0
|
1286 bnet.CPD{1} = root_CPD(bnet, 1);
|
wolffd@0
|
1287 bnet.CPD{2} = softmax_CPD(bnet, 2);
|
wolffd@0
|
1288 bnet.CPD{3} = gaussian_CPD(bnet, 3);
|
wolffd@0
|
1289 </PRE>
|
wolffd@0
|
1290 Now let us fit this model using <a href="#em">EM</a>.
|
wolffd@0
|
1291 First we <a href="#load_data">load the data</a> (1000 training cases) and plot them.
|
wolffd@0
|
1292 <P>
|
wolffd@0
|
1293 <PRE>
|
wolffd@0
|
1294 data = load('/examples/static/Misc/mixexp_data.txt', '-ascii');
|
wolffd@0
|
1295 plot(data(:,1), data(:,2), '.');
|
wolffd@0
|
1296 </PRE>
|
wolffd@0
|
1297 <p>
|
wolffd@0
|
1298 <center>
|
wolffd@0
|
1299 <IMG SRC="Figures/mixexp_data.gif">
|
wolffd@0
|
1300 </center>
|
wolffd@0
|
1301 <p>
|
wolffd@0
|
1302 This is what the model looks like before training.
|
wolffd@0
|
1303 (Thanks to Thomas Hofman for writing this plotting routine.)
|
wolffd@0
|
1304 <p>
|
wolffd@0
|
1305 <center>
|
wolffd@0
|
1306 <IMG SRC="Figures/mixexp_before.gif">
|
wolffd@0
|
1307 </center>
|
wolffd@0
|
1308 <p>
|
wolffd@0
|
1309 Now let's train the model, and plot the final performance.
|
wolffd@0
|
1310 (We will discuss how to train models in more detail <a href="#param_learning">below</a>.)
|
wolffd@0
|
1311 <P>
|
wolffd@0
|
1312 <PRE>
|
wolffd@0
|
1313 ncases = size(data, 1); % each row of data is a training case
|
wolffd@0
|
1314 cases = cell(3, ncases);
|
wolffd@0
|
1315 cases([1 3], :) = num2cell(data'); % each column of cases is a training case
|
wolffd@0
|
1316 engine = jtree_inf_engine(bnet);
|
wolffd@0
|
1317 max_iter = 20;
|
wolffd@0
|
1318 [bnet2, LLtrace] = learn_params_em(engine, cases, max_iter);
|
wolffd@0
|
1319 </PRE>
|
wolffd@0
|
1320 (We specify which nodes will be observed when we create the engine.
|
wolffd@0
|
1321 Hence BNT knows that the hidden nodes are all discrete.
|
wolffd@0
|
1322 For complex models, this can lead to a significant speedup.)
|
wolffd@0
|
1323 Below we show what the model looks like after 16 iterations of EM
|
wolffd@0
|
1324 (with 100 IRLS iterations per M step), when it converged
|
wolffd@0
|
1325 using the default convergence tolerance (that the
|
wolffd@0
|
1326 fractional change in the log-likelihood be less than 1e-3).
|
wolffd@0
|
1327 Before learning, the log-likelihood was
|
wolffd@0
|
1328 -322.927442; afterwards, it was -13.728778.
|
wolffd@0
|
1329 <p>
|
wolffd@0
|
1330 <center>
|
wolffd@0
|
1331 <IMG SRC="Figures/mixexp_after.gif">
|
wolffd@0
|
1332 </center>
|
wolffd@0
|
1333 (See BNT/examples/static/mixexp2.m for details of the code.)
|
wolffd@0
|
1334
|
wolffd@0
|
1335
|
wolffd@0
|
1336
|
wolffd@0
|
1337 <h2><a name="hme">Hierarchical mixtures of experts</h2>
|
wolffd@0
|
1338
|
wolffd@0
|
1339 A hierarchical mixture of experts (HME) extends the mixture of experts
|
wolffd@0
|
1340 model by having more than one hidden node. A two-level example is shown below, along
|
wolffd@0
|
1341 with its more traditional representation as a neural network.
|
wolffd@0
|
1342 This is like a (balanced) probabilistic decision tree of height 2.
|
wolffd@0
|
1343 <p>
|
wolffd@0
|
1344 <center>
|
wolffd@0
|
1345 <IMG SRC="Figures/HMEforMatlab.jpg">
|
wolffd@0
|
1346 </center>
|
wolffd@0
|
1347 <p>
|
wolffd@0
|
1348 <a href="mailto:pbrutti@stat.cmu.edu">Pierpaolo Brutti</a>
|
wolffd@0
|
1349 has written an extensive set of routines for HMEs,
|
wolffd@0
|
1350 which are bundled with BNT: see the examples/static/HME directory.
|
wolffd@0
|
1351 These routines allow you to choose the number of hidden (gating)
|
wolffd@0
|
1352 layers, and the form of the experts (softmax or MLP).
|
wolffd@0
|
1353 See the file hmemenu, which provides a demo.
|
wolffd@0
|
1354 For example, the figure below shows the decision boundaries learned
|
wolffd@0
|
1355 for a ternary classification problem, using a 2 level HME with softmax
|
wolffd@0
|
1356 gates and softmax experts; the training set is on the left, the
|
wolffd@0
|
1357 testing set on the right.
|
wolffd@0
|
1358 <p>
|
wolffd@0
|
1359 <center>
|
wolffd@0
|
1360 <!--<IMG SRC="Figures/hme_dec_boundary.gif">-->
|
wolffd@0
|
1361 <IMG SRC="Figures/hme_dec_boundary.png">
|
wolffd@0
|
1362 </center>
|
wolffd@0
|
1363 <p>
|
wolffd@0
|
1364
|
wolffd@0
|
1365
|
wolffd@0
|
1366 <p>
|
wolffd@0
|
1367 For more details, see the following:
|
wolffd@0
|
1368 <ul>
|
wolffd@0
|
1369
|
wolffd@0
|
1370 <li> <a href="http://www.cs.berkeley.edu/~jordan/papers/hierarchies.ps.Z">
|
wolffd@0
|
1371 Hierarchical mixtures of experts and the EM algorithm</a>
|
wolffd@0
|
1372 M. I. Jordan and R. A. Jacobs. Neural Computation, 6, 181-214, 1994.
|
wolffd@0
|
1373
|
wolffd@0
|
1374 <li> <a href =
|
wolffd@0
|
1375 "http://www.cs.berkeley.edu/~dmartin/software">David Martin's
|
wolffd@0
|
1376 matlab code for HME</a>
|
wolffd@0
|
1377
|
wolffd@0
|
1378 <li> <a
|
wolffd@0
|
1379 href="http://www.cs.berkeley.edu/~jordan/papers/uai.ps.Z">Why the
|
wolffd@0
|
1380 logistic function? A tutorial discussion on
|
wolffd@0
|
1381 probabilities and neural networks.</a> M. I. Jordan. MIT Computational
|
wolffd@0
|
1382 Cognitive Science Report 9503, August 1995.
|
wolffd@0
|
1383
|
wolffd@0
|
1384 <li> "Generalized Linear Models", McCullagh and Nelder, Chapman and
|
wolffd@0
|
1385 Halll, 1983.
|
wolffd@0
|
1386
|
wolffd@0
|
1387 <li>
|
wolffd@0
|
1388 "Improved learning algorithms for mixtures of experts in multiclass
|
wolffd@0
|
1389 classification".
|
wolffd@0
|
1390 K. Chen, L. Xu, H. Chi.
|
wolffd@0
|
1391 Neural Networks (1999) 12: 1229-1252.
|
wolffd@0
|
1392
|
wolffd@0
|
1393 <li> <a href="http://www.oigeeza.com/steve/">
|
wolffd@0
|
1394 Classification Using Hierarchical Mixtures of Experts</a>
|
wolffd@0
|
1395 S.R. Waterhouse and A.J. Robinson.
|
wolffd@0
|
1396 In Proc. IEEE Workshop on Neural Network for Signal Processing IV (1994), pp. 177-186
|
wolffd@0
|
1397
|
wolffd@0
|
1398 <li> <a href="http://www.idiap.ch/~perry/">
|
wolffd@0
|
1399 Localized mixtures of experts</a>,
|
wolffd@0
|
1400 P. Moerland, 1998.
|
wolffd@0
|
1401
|
wolffd@0
|
1402 <li> "Nonlinear gated experts for time series",
|
wolffd@0
|
1403 A.S. Weigend and M. Mangeas, 1995.
|
wolffd@0
|
1404
|
wolffd@0
|
1405 </ul>
|
wolffd@0
|
1406
|
wolffd@0
|
1407
|
wolffd@0
|
1408 <h2><a name="qmr">QMR</h2>
|
wolffd@0
|
1409
|
wolffd@0
|
1410 Bayes nets originally arose out of an attempt to add probabilities to
|
wolffd@0
|
1411 expert systems, and this is still the most common use for BNs.
|
wolffd@0
|
1412 A famous example is
|
wolffd@0
|
1413 QMR-DT, a decision-theoretic reformulation of the Quick Medical
|
wolffd@0
|
1414 Reference (QMR) model.
|
wolffd@0
|
1415 <p>
|
wolffd@0
|
1416 <center>
|
wolffd@0
|
1417 <IMG ALIGN=BOTTOM SRC="Figures/qmr.gif">
|
wolffd@0
|
1418 </center>
|
wolffd@0
|
1419 Here, the top layer represents hidden disease nodes, and the bottom
|
wolffd@0
|
1420 layer represents observed symptom nodes.
|
wolffd@0
|
1421 The goal is to infer the posterior probability of each disease given
|
wolffd@0
|
1422 all the symptoms (which can be present, absent or unknown).
|
wolffd@0
|
1423 Each node in the top layer has a Bernoulli prior (with a low prior
|
wolffd@0
|
1424 probability that the disease is present).
|
wolffd@0
|
1425 Since each node in the bottom layer has a high fan-in, we use a
|
wolffd@0
|
1426 noisy-OR parameterization; each disease has an independent chance of
|
wolffd@0
|
1427 causing each symptom.
|
wolffd@0
|
1428 The real QMR-DT model is copyright, but
|
wolffd@0
|
1429 we can create a random QMR-like model as follows.
|
wolffd@0
|
1430 <pre>
|
wolffd@0
|
1431 function bnet = mk_qmr_bnet(G, inhibit, leak, prior)
|
wolffd@0
|
1432 % MK_QMR_BNET Make a QMR model
|
wolffd@0
|
1433 % bnet = mk_qmr_bnet(G, inhibit, leak, prior)
|
wolffd@0
|
1434 %
|
wolffd@0
|
1435 % G(i,j) = 1 iff there is an arc from disease i to finding j
|
wolffd@0
|
1436 % inhibit(i,j) = inhibition probability on i->j arc
|
wolffd@0
|
1437 % leak(j) = inhibition prob. on leak->j arc
|
wolffd@0
|
1438 % prior(i) = prob. disease i is on
|
wolffd@0
|
1439
|
wolffd@0
|
1440 [Ndiseases Nfindings] = size(inhibit);
|
wolffd@0
|
1441 N = Ndiseases + Nfindings;
|
wolffd@0
|
1442 finding_node = Ndiseases+1:N;
|
wolffd@0
|
1443 ns = 2*ones(1,N);
|
wolffd@0
|
1444 dag = zeros(N,N);
|
wolffd@0
|
1445 dag(1:Ndiseases, finding_node) = G;
|
wolffd@0
|
1446 bnet = mk_bnet(dag, ns, 'observed', finding_node);
|
wolffd@0
|
1447
|
wolffd@0
|
1448 for d=1:Ndiseases
|
wolffd@0
|
1449 CPT = [1-prior(d) prior(d)];
|
wolffd@0
|
1450 bnet.CPD{d} = tabular_CPD(bnet, d, CPT');
|
wolffd@0
|
1451 end
|
wolffd@0
|
1452
|
wolffd@0
|
1453 for i=1:Nfindings
|
wolffd@0
|
1454 fnode = finding_node(i);
|
wolffd@0
|
1455 ps = parents(G, i);
|
wolffd@0
|
1456 bnet.CPD{fnode} = noisyor_CPD(bnet, fnode, leak(i), inhibit(ps, i));
|
wolffd@0
|
1457 end
|
wolffd@0
|
1458 </pre>
|
wolffd@0
|
1459 In the file BNT/examples/static/qmr1, we create a random bipartite
|
wolffd@0
|
1460 graph G, with 5 diseases and 10 findings, and random parameters.
|
wolffd@0
|
1461 (In general, to create a random dag, use 'mk_random_dag'.)
|
wolffd@0
|
1462 We can visualize the resulting graph structure using
|
wolffd@0
|
1463 the methods discussed <a href="#graphdraw">below</a>, with the
|
wolffd@0
|
1464 following results:
|
wolffd@0
|
1465 <p>
|
wolffd@0
|
1466 <img src="Figures/qmr.rnd.jpg">
|
wolffd@0
|
1467
|
wolffd@0
|
1468 <p>
|
wolffd@0
|
1469 Now let us put some random evidence on all the leaves except the very
|
wolffd@0
|
1470 first and very last, and compute the disease posteriors.
|
wolffd@0
|
1471 <pre>
|
wolffd@0
|
1472 pos = 2:floor(Nfindings/2);
|
wolffd@0
|
1473 neg = (pos(end)+1):(Nfindings-1);
|
wolffd@0
|
1474 onodes = myunion(pos, neg);
|
wolffd@0
|
1475 evidence = cell(1, N);
|
wolffd@0
|
1476 evidence(findings(pos)) = num2cell(repmat(2, 1, length(pos)));
|
wolffd@0
|
1477 evidence(findings(neg)) = num2cell(repmat(1, 1, length(neg)));
|
wolffd@0
|
1478
|
wolffd@0
|
1479 engine = jtree_inf_engine(bnet);
|
wolffd@0
|
1480 [engine, ll] = enter_evidence(engine, evidence);
|
wolffd@0
|
1481 post = zeros(1, Ndiseases);
|
wolffd@0
|
1482 for i=diseases(:)'
|
wolffd@0
|
1483 m = marginal_nodes(engine, i);
|
wolffd@0
|
1484 post(i) = m.T(2);
|
wolffd@0
|
1485 end
|
wolffd@0
|
1486 </pre>
|
wolffd@0
|
1487 Junction tree can be quite slow on large QMR models.
|
wolffd@0
|
1488 Fortunately, it is possible to exploit properties of the noisy-OR
|
wolffd@0
|
1489 function to speed up exact inference using an algorithm called
|
wolffd@0
|
1490 <a href="#quickscore">quickscore</a>, discussed below.
|
wolffd@0
|
1491
|
wolffd@0
|
1492
|
wolffd@0
|
1493
|
wolffd@0
|
1494
|
wolffd@0
|
1495
|
wolffd@0
|
1496 <h2><a name="cg_model">Conditional Gaussian models</h2>
|
wolffd@0
|
1497
|
wolffd@0
|
1498 A conditional Gaussian model is one in which, conditioned on all the discrete
|
wolffd@0
|
1499 nodes, the distribution over the remaining (continuous) nodes is
|
wolffd@0
|
1500 multivariate Gaussian. This means we can have arcs from discrete (D)
|
wolffd@0
|
1501 to continuous (C) nodes, but not vice versa.
|
wolffd@0
|
1502 (We <em>are</em> allowed C->D arcs if the continuous nodes are observed,
|
wolffd@0
|
1503 as in the <a href="#mixexp">mixture of experts</a> model,
|
wolffd@0
|
1504 since this distribution can be represented with a discrete potential.)
|
wolffd@0
|
1505 <p>
|
wolffd@0
|
1506 We now give an example of a CG model, from
|
wolffd@0
|
1507 the paper "Propagation of Probabilities, Means amd
|
wolffd@0
|
1508 Variances in Mixed Graphical Association Models", Steffen Lauritzen,
|
wolffd@0
|
1509 JASA 87(420):1098--1108, 1992 (reprinted in the book "Probabilistic Networks and Expert
|
wolffd@0
|
1510 Systems", R. G. Cowell, A. P. Dawid, S. L. Lauritzen and
|
wolffd@0
|
1511 D. J. Spiegelhalter, Springer, 1999.)
|
wolffd@0
|
1512
|
wolffd@0
|
1513 <h3>Specifying the graph</h3>
|
wolffd@0
|
1514
|
wolffd@0
|
1515 Consider the model of waste emissions from an incinerator plant shown below.
|
wolffd@0
|
1516 We follow the standard convention that shaded nodes are observed,
|
wolffd@0
|
1517 clear nodes are hidden.
|
wolffd@0
|
1518 We also use the non-standard convention that
|
wolffd@0
|
1519 square nodes are discrete (tabular) and round nodes are
|
wolffd@0
|
1520 Gaussian.
|
wolffd@0
|
1521
|
wolffd@0
|
1522 <p>
|
wolffd@0
|
1523 <center>
|
wolffd@0
|
1524 <IMG SRC="Figures/cg1.gif">
|
wolffd@0
|
1525 </center>
|
wolffd@0
|
1526 <p>
|
wolffd@0
|
1527
|
wolffd@0
|
1528 We can create this model as follows.
|
wolffd@0
|
1529 <pre>
|
wolffd@0
|
1530 F = 1; W = 2; E = 3; B = 4; C = 5; D = 6; Min = 7; Mout = 8; L = 9;
|
wolffd@0
|
1531 n = 9;
|
wolffd@0
|
1532
|
wolffd@0
|
1533 dag = zeros(n);
|
wolffd@0
|
1534 dag(F,E)=1;
|
wolffd@0
|
1535 dag(W,[E Min D]) = 1;
|
wolffd@0
|
1536 dag(E,D)=1;
|
wolffd@0
|
1537 dag(B,[C D])=1;
|
wolffd@0
|
1538 dag(D,[L Mout])=1;
|
wolffd@0
|
1539 dag(Min,Mout)=1;
|
wolffd@0
|
1540
|
wolffd@0
|
1541 % node sizes - all cts nodes are scalar, all discrete nodes are binary
|
wolffd@0
|
1542 ns = ones(1, n);
|
wolffd@0
|
1543 dnodes = [F W B];
|
wolffd@0
|
1544 cnodes = mysetdiff(1:n, dnodes);
|
wolffd@0
|
1545 ns(dnodes) = 2;
|
wolffd@0
|
1546
|
wolffd@0
|
1547 bnet = mk_bnet(dag, ns, 'discrete', dnodes);
|
wolffd@0
|
1548 </pre>
|
wolffd@0
|
1549 'dnodes' is a list of the discrete nodes; 'cnodes' is the continuous
|
wolffd@0
|
1550 nodes. 'mysetdiff' is a faster version of the built-in 'setdiff'.
|
wolffd@0
|
1551 <p>
|
wolffd@0
|
1552
|
wolffd@0
|
1553
|
wolffd@0
|
1554 <h3>Specifying the parameters</h3>
|
wolffd@0
|
1555
|
wolffd@0
|
1556 The parameters of the discrete nodes can be specified as follows.
|
wolffd@0
|
1557 <pre>
|
wolffd@0
|
1558 bnet.CPD{B} = tabular_CPD(bnet, B, 'CPT', [0.85 0.15]); % 1=stable, 2=unstable
|
wolffd@0
|
1559 bnet.CPD{F} = tabular_CPD(bnet, F, 'CPT', [0.95 0.05]); % 1=intact, 2=defect
|
wolffd@0
|
1560 bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [2/7 5/7]); % 1=industrial, 2=household
|
wolffd@0
|
1561 </pre>
|
wolffd@0
|
1562
|
wolffd@0
|
1563 <p>
|
wolffd@0
|
1564 The parameters of the continuous nodes can be specified as follows.
|
wolffd@0
|
1565 <pre>
|
wolffd@0
|
1566 bnet.CPD{E} = gaussian_CPD(bnet, E, 'mean', [-3.9 -0.4 -3.2 -0.5], ...
|
wolffd@0
|
1567 'cov', [0.00002 0.0001 0.00002 0.0001]);
|
wolffd@0
|
1568 bnet.CPD{D} = gaussian_CPD(bnet, D, 'mean', [6.5 6.0 7.5 7.0], ...
|
wolffd@0
|
1569 'cov', [0.03 0.04 0.1 0.1], 'weights', [1 1 1 1]);
|
wolffd@0
|
1570 bnet.CPD{C} = gaussian_CPD(bnet, C, 'mean', [-2 -1], 'cov', [0.1 0.3]);
|
wolffd@0
|
1571 bnet.CPD{L} = gaussian_CPD(bnet, L, 'mean', 3, 'cov', 0.25, 'weights', -0.5);
|
wolffd@0
|
1572 bnet.CPD{Min} = gaussian_CPD(bnet, Min, 'mean', [0.5 -0.5], 'cov', [0.01 0.005]);
|
wolffd@0
|
1573 bnet.CPD{Mout} = gaussian_CPD(bnet, Mout, 'mean', 0, 'cov', 0.002, 'weights', [1 1]);
|
wolffd@0
|
1574 </pre>
|
wolffd@0
|
1575
|
wolffd@0
|
1576
|
wolffd@0
|
1577 <h3><a name="cg_infer">Inference</h3>
|
wolffd@0
|
1578
|
wolffd@0
|
1579 <!--Let us perform inference in the <a href="#cg_model">waste incinerator example</a>.-->
|
wolffd@0
|
1580 First we compute the unconditional marginals.
|
wolffd@0
|
1581 <pre>
|
wolffd@0
|
1582 engine = jtree_inf_engine(bnet);
|
wolffd@0
|
1583 evidence = cell(1,n);
|
wolffd@0
|
1584 [engine, ll] = enter_evidence(engine, evidence);
|
wolffd@0
|
1585 marg = marginal_nodes(engine, E);
|
wolffd@0
|
1586 </pre>
|
wolffd@0
|
1587 <!--(Of course, we could use <tt>cond_gauss_inf_engine</tt> instead of jtree.)-->
|
wolffd@0
|
1588 'marg' is a structure that contains the fields 'mu' and 'Sigma', which
|
wolffd@0
|
1589 contain the mean and (co)variance of the marginal on E.
|
wolffd@0
|
1590 In this case, they are both scalars.
|
wolffd@0
|
1591 Let us check they match the published figures (to 2 decimal places).
|
wolffd@0
|
1592 <!--(We can't expect
|
wolffd@0
|
1593 more precision than this in general because I have implemented the algorithm of
|
wolffd@0
|
1594 Lauritzen (1992), which can be numerically unstable.)-->
|
wolffd@0
|
1595 <pre>
|
wolffd@0
|
1596 tol = 1e-2;
|
wolffd@0
|
1597 assert(approxeq(marg.mu, -3.25, tol));
|
wolffd@0
|
1598 assert(approxeq(sqrt(marg.Sigma), 0.709, tol));
|
wolffd@0
|
1599 </pre>
|
wolffd@0
|
1600 We can compute the other posteriors similarly.
|
wolffd@0
|
1601 Now let us add some evidence.
|
wolffd@0
|
1602 <pre>
|
wolffd@0
|
1603 evidence = cell(1,n);
|
wolffd@0
|
1604 evidence{W} = 1; % industrial
|
wolffd@0
|
1605 evidence{L} = 1.1;
|
wolffd@0
|
1606 evidence{C} = -0.9;
|
wolffd@0
|
1607 [engine, ll] = enter_evidence(engine, evidence);
|
wolffd@0
|
1608 </pre>
|
wolffd@0
|
1609 Now we find
|
wolffd@0
|
1610 <pre>
|
wolffd@0
|
1611 marg = marginal_nodes(engine, E);
|
wolffd@0
|
1612 assert(approxeq(marg.mu, -3.8983, tol));
|
wolffd@0
|
1613 assert(approxeq(sqrt(marg.Sigma), 0.0763, tol));
|
wolffd@0
|
1614 </pre>
|
wolffd@0
|
1615
|
wolffd@0
|
1616
|
wolffd@0
|
1617 We can also compute the joint probability on a set of nodes.
|
wolffd@0
|
1618 For example, P(D, Mout | evidence) is a 2D Gaussian:
|
wolffd@0
|
1619 <pre>
|
wolffd@0
|
1620 marg = marginal_nodes(engine, [D Mout])
|
wolffd@0
|
1621 marg =
|
wolffd@0
|
1622 domain: [6 8]
|
wolffd@0
|
1623 mu: [2x1 double]
|
wolffd@0
|
1624 Sigma: [2x2 double]
|
wolffd@0
|
1625 T: 1.0000
|
wolffd@0
|
1626 </pre>
|
wolffd@0
|
1627 The mean is
|
wolffd@0
|
1628 <pre>
|
wolffd@0
|
1629 marg.mu
|
wolffd@0
|
1630 ans =
|
wolffd@0
|
1631 3.6077
|
wolffd@0
|
1632 4.1077
|
wolffd@0
|
1633 </pre>
|
wolffd@0
|
1634 and the covariance matrix is
|
wolffd@0
|
1635 <pre>
|
wolffd@0
|
1636 marg.Sigma
|
wolffd@0
|
1637 ans =
|
wolffd@0
|
1638 0.1062 0.1062
|
wolffd@0
|
1639 0.1062 0.1182
|
wolffd@0
|
1640 </pre>
|
wolffd@0
|
1641 It is easy to visualize this posterior using standard Matlab plotting
|
wolffd@0
|
1642 functions, e.g.,
|
wolffd@0
|
1643 <pre>
|
wolffd@0
|
1644 gaussplot2d(marg.mu, marg.Sigma);
|
wolffd@0
|
1645 </pre>
|
wolffd@0
|
1646 produces the following picture.
|
wolffd@0
|
1647
|
wolffd@0
|
1648 <p>
|
wolffd@0
|
1649 <center>
|
wolffd@0
|
1650 <IMG SRC="Figures/gaussplot.png">
|
wolffd@0
|
1651 </center>
|
wolffd@0
|
1652 <p>
|
wolffd@0
|
1653
|
wolffd@0
|
1654
|
wolffd@0
|
1655 The T field indicates that the mixing weight of this Gaussian
|
wolffd@0
|
1656 component is 1.0.
|
wolffd@0
|
1657 If the joint contains discrete and continuous variables, the result
|
wolffd@0
|
1658 will be a mixture of Gaussians, e.g.,
|
wolffd@0
|
1659 <pre>
|
wolffd@0
|
1660 marg = marginal_nodes(engine, [F E])
|
wolffd@0
|
1661 domain: [1 3]
|
wolffd@0
|
1662 mu: [-3.9000 -0.4003]
|
wolffd@0
|
1663 Sigma: [1x1x2 double]
|
wolffd@0
|
1664 T: [0.9995 4.7373e-04]
|
wolffd@0
|
1665 </pre>
|
wolffd@0
|
1666 The interpretation is
|
wolffd@0
|
1667 Sigma(i,j,k) = Cov[ E(i) E(j) | F=k ].
|
wolffd@0
|
1668 In this case, E is a scalar, so i=j=1; k specifies the mixture component.
|
wolffd@0
|
1669 <p>
|
wolffd@0
|
1670 We saw in the sprinkler network that BNT sets the effective size of
|
wolffd@0
|
1671 observed discrete nodes to 1, since they only have one legal value.
|
wolffd@0
|
1672 For continuous nodes, BNT sets their length to 0,
|
wolffd@0
|
1673 since they have been reduced to a point.
|
wolffd@0
|
1674 For example,
|
wolffd@0
|
1675 <pre>
|
wolffd@0
|
1676 marg = marginal_nodes(engine, [B C])
|
wolffd@0
|
1677 domain: [4 5]
|
wolffd@0
|
1678 mu: []
|
wolffd@0
|
1679 Sigma: []
|
wolffd@0
|
1680 T: [0.0123 0.9877]
|
wolffd@0
|
1681 </pre>
|
wolffd@0
|
1682 It is simple to post-process the output of marginal_nodes.
|
wolffd@0
|
1683 For example, the file BNT/examples/static/cg1 sets the mu term of
|
wolffd@0
|
1684 observed nodes to their observed value, and the Sigma term to 0 (since
|
wolffd@0
|
1685 observed nodes have no variance).
|
wolffd@0
|
1686
|
wolffd@0
|
1687 <p>
|
wolffd@0
|
1688 Note that the implemented version of the junction tree is numerically
|
wolffd@0
|
1689 unstable when using CG potentials
|
wolffd@0
|
1690 (which is why, in the example above, we only required our answers to agree with
|
wolffd@0
|
1691 the published ones to 2dp.)
|
wolffd@0
|
1692 This is why you might want to use <tt>stab_cond_gauss_inf_engine</tt>,
|
wolffd@0
|
1693 implemented by Shan Huang. This is described in
|
wolffd@0
|
1694
|
wolffd@0
|
1695 <ul>
|
wolffd@0
|
1696 <li> "Stable Local Computation with Conditional Gaussian Distributions",
|
wolffd@0
|
1697 S. Lauritzen and F. Jensen, Tech Report R-99-2014,
|
wolffd@0
|
1698 Dept. Math. Sciences, Allborg Univ., 1999.
|
wolffd@0
|
1699 </ul>
|
wolffd@0
|
1700
|
wolffd@0
|
1701 However, even the numerically stable version
|
wolffd@0
|
1702 can be computationally intractable if there are many hidden discrete
|
wolffd@0
|
1703 nodes, because the number of mixture components grows exponentially e.g., in a
|
wolffd@0
|
1704 <a href="usage_dbn.html#lds">switching linear dynamical system</a>.
|
wolffd@0
|
1705 In general, one must resort to approximate inference techniques: see
|
wolffd@0
|
1706 the discussion on <a href="#engines">inference engines</a> below.
|
wolffd@0
|
1707
|
wolffd@0
|
1708
|
wolffd@0
|
1709 <h2><a name="hybrid">Other hybrid models</h2>
|
wolffd@0
|
1710
|
wolffd@0
|
1711 When we have C->D arcs, where C is hidden, we need to use
|
wolffd@0
|
1712 approximate inference.
|
wolffd@0
|
1713 One approach (not implemented in BNT) is described in
|
wolffd@0
|
1714 <ul>
|
wolffd@0
|
1715 <li> <a
|
wolffd@0
|
1716 href="http://www.cs.berkeley.edu/~murphyk/Papers/hybrid_uai99.ps.gz">A
|
wolffd@0
|
1717 Variational Approximation for Bayesian Networks with
|
wolffd@0
|
1718 Discrete and Continuous Latent Variables</a>,
|
wolffd@0
|
1719 K. Murphy, UAI 99.
|
wolffd@0
|
1720 </ul>
|
wolffd@0
|
1721 Of course, one can always use <a href="#sampling">sampling</a> methods
|
wolffd@0
|
1722 for approximate inference in such models.
|
wolffd@0
|
1723
|
wolffd@0
|
1724
|
wolffd@0
|
1725
|
wolffd@0
|
1726 <h1><a name="param_learning">Parameter Learning</h1>
|
wolffd@0
|
1727
|
wolffd@0
|
1728 The parameter estimation routines in BNT can be classified into 4
|
wolffd@0
|
1729 types, depending on whether the goal is to compute
|
wolffd@0
|
1730 a full (Bayesian) posterior over the parameters or just a point
|
wolffd@0
|
1731 estimate (e.g., Maximum Likelihood or Maximum A Posteriori),
|
wolffd@0
|
1732 and whether all the variables are fully observed or there is missing
|
wolffd@0
|
1733 data/ hidden variables (partial observability).
|
wolffd@0
|
1734 <p>
|
wolffd@0
|
1735
|
wolffd@0
|
1736 <TABLE BORDER>
|
wolffd@0
|
1737 <tr>
|
wolffd@0
|
1738 <TH></TH>
|
wolffd@0
|
1739 <th>Full obs</th>
|
wolffd@0
|
1740 <th>Partial obs</th>
|
wolffd@0
|
1741 </tr>
|
wolffd@0
|
1742 <tr>
|
wolffd@0
|
1743 <th>Point</th>
|
wolffd@0
|
1744 <td><tt>learn_params</tt></td>
|
wolffd@0
|
1745 <td><tt>learn_params_em</tt></td>
|
wolffd@0
|
1746 </tr>
|
wolffd@0
|
1747 <tr>
|
wolffd@0
|
1748 <th>Bayes</th>
|
wolffd@0
|
1749 <td><tt>bayes_update_params</tt></td>
|
wolffd@0
|
1750 <td>not yet supported</td>
|
wolffd@0
|
1751 </tr>
|
wolffd@0
|
1752 </table>
|
wolffd@0
|
1753
|
wolffd@0
|
1754
|
wolffd@0
|
1755 <h2><a name="load_data">Loading data from a file</h2>
|
wolffd@0
|
1756
|
wolffd@0
|
1757 To load numeric data from an ASCII text file called 'dat.txt', where each row is a
|
wolffd@0
|
1758 case and columns are separated by white-space, such as
|
wolffd@0
|
1759 <pre>
|
wolffd@0
|
1760 011979 1626.5 0.0
|
wolffd@0
|
1761 021979 1367.0 0.0
|
wolffd@0
|
1762 ...
|
wolffd@0
|
1763 </pre>
|
wolffd@0
|
1764 you can use
|
wolffd@0
|
1765 <pre>
|
wolffd@0
|
1766 data = load('dat.txt');
|
wolffd@0
|
1767 </pre>
|
wolffd@0
|
1768 or
|
wolffd@0
|
1769 <pre>
|
wolffd@0
|
1770 load dat.txt -ascii
|
wolffd@0
|
1771 </pre>
|
wolffd@0
|
1772 In the latter case, the data is stored in a variable called 'dat' (the
|
wolffd@0
|
1773 filename minus the extension).
|
wolffd@0
|
1774 Alternatively, suppose the data is stored in a .csv file (has commas
|
wolffd@0
|
1775 separating the columns, and contains a header line), such as
|
wolffd@0
|
1776 <pre>
|
wolffd@0
|
1777 header info goes here
|
wolffd@0
|
1778 ORD,011979,1626.5,0.0
|
wolffd@0
|
1779 DSM,021979,1367.0,0.0
|
wolffd@0
|
1780 ...
|
wolffd@0
|
1781 </pre>
|
wolffd@0
|
1782 You can load this using
|
wolffd@0
|
1783 <pre>
|
wolffd@0
|
1784 [a,b,c,d] = textread('dat.txt', '%s %d %f %f', 'delimiter', ',', 'headerlines', 1);
|
wolffd@0
|
1785 </pre>
|
wolffd@0
|
1786 If your file is not in either of these formats, you can either use Perl to convert
|
wolffd@0
|
1787 it to this format, or use the Matlab scanf command.
|
wolffd@0
|
1788 Type
|
wolffd@0
|
1789 <tt>
|
wolffd@0
|
1790 help iofun
|
wolffd@0
|
1791 </tt>
|
wolffd@0
|
1792 for more information on Matlab's file functions.
|
wolffd@0
|
1793 <!--
|
wolffd@0
|
1794 <p>
|
wolffd@0
|
1795 To load data directly from Excel,
|
wolffd@0
|
1796 you should buy the
|
wolffd@0
|
1797 <a href="http://www.mathworks.com/products/excellink/">Excel Link</a>.
|
wolffd@0
|
1798 To load data directly from a relational database,
|
wolffd@0
|
1799 you should buy the
|
wolffd@0
|
1800 <a href="http://www.mathworks.com/products/database">Database
|
wolffd@0
|
1801 toolbox</a>.
|
wolffd@0
|
1802 -->
|
wolffd@0
|
1803 <p>
|
wolffd@0
|
1804 BNT learning routines require data to be stored in a cell array.
|
wolffd@0
|
1805 data{i,m} is the value of node i in case (example) m, i.e., each
|
wolffd@0
|
1806 <em>column</em> is a case.
|
wolffd@0
|
1807 If node i is not observed in case m (missing value), set
|
wolffd@0
|
1808 data{i,m} = [].
|
wolffd@0
|
1809 (Not all the learning routines can cope with such missing values, however.)
|
wolffd@0
|
1810 In the special case that all the nodes are observed and are
|
wolffd@0
|
1811 scalar-valued (as opposed to vector-valued), the data can be
|
wolffd@0
|
1812 stored in a matrix (as opposed to a cell-array).
|
wolffd@0
|
1813 <p>
|
wolffd@0
|
1814 Suppose, as in the <a href="#mixexp">mixture of experts example</a>,
|
wolffd@0
|
1815 that we have 3 nodes in the graph: X(1) is the observed input, X(3) is
|
wolffd@0
|
1816 the observed output, and X(2) is a hidden (gating) node. We can
|
wolffd@0
|
1817 create the dataset as follows.
|
wolffd@0
|
1818 <pre>
|
wolffd@0
|
1819 data = load('dat.txt');
|
wolffd@0
|
1820 ncases = size(data, 1);
|
wolffd@0
|
1821 cases = cell(3, ncases);
|
wolffd@0
|
1822 cases([1 3], :) = num2cell(data');
|
wolffd@0
|
1823 </pre>
|
wolffd@0
|
1824 Notice how we transposed the data, to convert rows into columns.
|
wolffd@0
|
1825 Also, cases{2,m} = [] for all m, since X(2) is always hidden.
|
wolffd@0
|
1826
|
wolffd@0
|
1827
|
wolffd@0
|
1828 <h2><a name="mle_complete">Maximum likelihood parameter estimation from complete data</h2>
|
wolffd@0
|
1829
|
wolffd@0
|
1830 As an example, let's generate some data from the sprinkler network, randomize the parameters,
|
wolffd@0
|
1831 and then try to recover the original model.
|
wolffd@0
|
1832 First we create some training data using forwards sampling.
|
wolffd@0
|
1833 <pre>
|
wolffd@0
|
1834 samples = cell(N, nsamples);
|
wolffd@0
|
1835 for i=1:nsamples
|
wolffd@0
|
1836 samples(:,i) = sample_bnet(bnet);
|
wolffd@0
|
1837 end
|
wolffd@0
|
1838 </pre>
|
wolffd@0
|
1839 samples{j,i} contains the value of the j'th node in case i.
|
wolffd@0
|
1840 sample_bnet returns a cell array because, in general, each node might
|
wolffd@0
|
1841 be a vector of different length.
|
wolffd@0
|
1842 In this case, all nodes are discrete (and hence scalars), so we
|
wolffd@0
|
1843 could have used a regular array instead (which can be quicker):
|
wolffd@0
|
1844 <pre>
|
wolffd@0
|
1845 data = cell2num(samples);
|
wolffd@0
|
1846 </pre
|
wolffd@0
|
1847 So now data(j,i) = samples{j,i}.
|
wolffd@0
|
1848 <p>
|
wolffd@0
|
1849 Now we create a network with random parameters.
|
wolffd@0
|
1850 (The initial values of bnet2 don't matter in this case, since we can find the
|
wolffd@0
|
1851 globally optimal MLE independent of where we start.)
|
wolffd@0
|
1852 <pre>
|
wolffd@0
|
1853 % Make a tabula rasa
|
wolffd@0
|
1854 bnet2 = mk_bnet(dag, node_sizes);
|
wolffd@0
|
1855 seed = 0;
|
wolffd@0
|
1856 rand('state', seed);
|
wolffd@0
|
1857 bnet2.CPD{C} = tabular_CPD(bnet2, C);
|
wolffd@0
|
1858 bnet2.CPD{R} = tabular_CPD(bnet2, R);
|
wolffd@0
|
1859 bnet2.CPD{S} = tabular_CPD(bnet2, S);
|
wolffd@0
|
1860 bnet2.CPD{W} = tabular_CPD(bnet2, W);
|
wolffd@0
|
1861 </pre>
|
wolffd@0
|
1862 Finally, we find the maximum likelihood estimates of the parameters.
|
wolffd@0
|
1863 <pre>
|
wolffd@0
|
1864 bnet3 = learn_params(bnet2, samples);
|
wolffd@0
|
1865 </pre>
|
wolffd@0
|
1866 To view the learned parameters, we use a little Matlab hackery.
|
wolffd@0
|
1867 <pre>
|
wolffd@0
|
1868 CPT3 = cell(1,N);
|
wolffd@0
|
1869 for i=1:N
|
wolffd@0
|
1870 s=struct(bnet3.CPD{i}); % violate object privacy
|
wolffd@0
|
1871 CPT3{i}=s.CPT;
|
wolffd@0
|
1872 end
|
wolffd@0
|
1873 </pre>
|
wolffd@0
|
1874 Here are the parameters learned for node 4.
|
wolffd@0
|
1875 <pre>
|
wolffd@0
|
1876 dispcpt(CPT3{4})
|
wolffd@0
|
1877 1 1 : 1.0000 0.0000
|
wolffd@0
|
1878 2 1 : 0.2000 0.8000
|
wolffd@0
|
1879 1 2 : 0.2273 0.7727
|
wolffd@0
|
1880 2 2 : 0.0000 1.0000
|
wolffd@0
|
1881 </pre>
|
wolffd@0
|
1882 So we see that the learned parameters are fairly close to the "true"
|
wolffd@0
|
1883 ones, which we display below.
|
wolffd@0
|
1884 <pre>
|
wolffd@0
|
1885 dispcpt(CPT{4})
|
wolffd@0
|
1886 1 1 : 1.0000 0.0000
|
wolffd@0
|
1887 2 1 : 0.1000 0.9000
|
wolffd@0
|
1888 1 2 : 0.1000 0.9000
|
wolffd@0
|
1889 2 2 : 0.0100 0.9900
|
wolffd@0
|
1890 </pre>
|
wolffd@0
|
1891 We can get better results by using a larger training set, or using
|
wolffd@0
|
1892 informative priors (see <a href="#prior">below</a>).
|
wolffd@0
|
1893
|
wolffd@0
|
1894
|
wolffd@0
|
1895
|
wolffd@0
|
1896 <h2><a name="prior">Parameter priors</h2>
|
wolffd@0
|
1897
|
wolffd@0
|
1898 Currently, only tabular CPDs can have priors on their parameters.
|
wolffd@0
|
1899 The conjugate prior for a multinomial is the Dirichlet.
|
wolffd@0
|
1900 (For binary random variables, the multinomial is the same as the
|
wolffd@0
|
1901 Bernoulli, and the Dirichlet is the same as the Beta.)
|
wolffd@0
|
1902 <p>
|
wolffd@0
|
1903 The Dirichlet has a simple interpretation in terms of pseudo counts.
|
wolffd@0
|
1904 If we let N_ijk = the num. times X_i=k and Pa_i=j occurs in the
|
wolffd@0
|
1905 training set, where Pa_i are the parents of X_i,
|
wolffd@0
|
1906 then the maximum likelihood (ML) estimate is
|
wolffd@0
|
1907 T_ijk = N_ijk / N_ij (where N_ij = sum_k' N_ijk'), which will be 0 if N_ijk=0.
|
wolffd@0
|
1908 To prevent us from declaring that (X_i=k, Pa_i=j) is impossible just because this
|
wolffd@0
|
1909 event was not seen in the training set,
|
wolffd@0
|
1910 we can pretend we saw value k of X_i, for each value j of Pa_i some number (alpha_ijk)
|
wolffd@0
|
1911 of times in the past.
|
wolffd@0
|
1912 The MAP (maximum a posterior) estimate is then
|
wolffd@0
|
1913 <pre>
|
wolffd@0
|
1914 T_ijk = (N_ijk + alpha_ijk) / (N_ij + alpha_ij)
|
wolffd@0
|
1915 </pre>
|
wolffd@0
|
1916 and is never 0 if all alpha_ijk > 0.
|
wolffd@0
|
1917 For example, consider the network A->B, where A is binary and B has 3
|
wolffd@0
|
1918 values.
|
wolffd@0
|
1919 A uniform prior for B has the form
|
wolffd@0
|
1920 <pre>
|
wolffd@0
|
1921 B=1 B=2 B=3
|
wolffd@0
|
1922 A=1 1 1 1
|
wolffd@0
|
1923 A=2 1 1 1
|
wolffd@0
|
1924 </pre>
|
wolffd@0
|
1925 which can be created using
|
wolffd@0
|
1926 <pre>
|
wolffd@0
|
1927 tabular_CPD(bnet, i, 'prior_type', 'dirichlet', 'dirichlet_type', 'unif');
|
wolffd@0
|
1928 </pre>
|
wolffd@0
|
1929 This prior does not satisfy the likelihood equivalence principle,
|
wolffd@0
|
1930 which says that <a href="#markov_equiv">Markov equivalent</a> models
|
wolffd@0
|
1931 should have the same marginal likelihood.
|
wolffd@0
|
1932 A prior that does satisfy this principle is shown below.
|
wolffd@0
|
1933 Heckerman (1995) calls this the
|
wolffd@0
|
1934 BDeu prior (likelihood equivalent uniform Bayesian Dirichlet).
|
wolffd@0
|
1935 <pre>
|
wolffd@0
|
1936 B=1 B=2 B=3
|
wolffd@0
|
1937 A=1 1/6 1/6 1/6
|
wolffd@0
|
1938 A=2 1/6 1/6 1/6
|
wolffd@0
|
1939 </pre>
|
wolffd@0
|
1940 where we put N/(q*r) in each bin; N is the equivalent sample size,
|
wolffd@0
|
1941 r=|A|, q = |B|.
|
wolffd@0
|
1942 This can be created as follows
|
wolffd@0
|
1943 <pre>
|
wolffd@0
|
1944 tabular_CPD(bnet, i, 'prior_type', 'dirichlet', 'dirichlet_type', 'BDeu');
|
wolffd@0
|
1945 </pre>
|
wolffd@0
|
1946 Here, 1 is the equivalent sample size, and is the strength of the
|
wolffd@0
|
1947 prior.
|
wolffd@0
|
1948 You can change this using
|
wolffd@0
|
1949 <pre>
|
wolffd@0
|
1950 tabular_CPD(bnet, i, 'prior_type', 'dirichlet', 'dirichlet_type', ...
|
wolffd@0
|
1951 'BDeu', 'dirichlet_weight', 10);
|
wolffd@0
|
1952 </pre>
|
wolffd@0
|
1953 <!--where counts is an array of pseudo-counts of the same size as the
|
wolffd@0
|
1954 CPT.-->
|
wolffd@0
|
1955 <!--
|
wolffd@0
|
1956 <p>
|
wolffd@0
|
1957 When you specify a prior, you should set row i of the CPT to the
|
wolffd@0
|
1958 normalized version of row i of the pseudo-count matrix, i.e., to the
|
wolffd@0
|
1959 expected values of the parameters. This will ensure that computing the
|
wolffd@0
|
1960 marginal likelihood sequentially (see <a
|
wolffd@0
|
1961 href="#bayes_learn">below</a>) and in batch form gives the same
|
wolffd@0
|
1962 results.
|
wolffd@0
|
1963 To do this, proceed as follows.
|
wolffd@0
|
1964 <pre>
|
wolffd@0
|
1965 tabular_CPD(bnet, i, 'prior', counts, 'CPT', mk_stochastic(counts));
|
wolffd@0
|
1966 </pre>
|
wolffd@0
|
1967 For a non-informative prior, you can just write
|
wolffd@0
|
1968 <pre>
|
wolffd@0
|
1969 tabular_CPD(bnet, i, 'prior', 'unif', 'CPT', 'unif');
|
wolffd@0
|
1970 </pre>
|
wolffd@0
|
1971 -->
|
wolffd@0
|
1972
|
wolffd@0
|
1973
|
wolffd@0
|
1974 <h2><a name="bayes_learn">(Sequential) Bayesian parameter updating from complete data</h2>
|
wolffd@0
|
1975
|
wolffd@0
|
1976 If we use conjugate priors and have fully observed data, we can
|
wolffd@0
|
1977 compute the posterior over the parameters in batch form as follows.
|
wolffd@0
|
1978 <pre>
|
wolffd@0
|
1979 cases = sample_bnet(bnet, nsamples);
|
wolffd@0
|
1980 bnet = bayes_update_params(bnet, cases);
|
wolffd@0
|
1981 LL = log_marg_lik_complete(bnet, cases);
|
wolffd@0
|
1982 </pre>
|
wolffd@0
|
1983 bnet.CPD{i}.prior contains the new Dirichlet pseudocounts,
|
wolffd@0
|
1984 and bnet.CPD{i}.CPT is set to the mean of the posterior (the
|
wolffd@0
|
1985 normalized counts).
|
wolffd@0
|
1986 (Hence if the initial pseudo counts are 0,
|
wolffd@0
|
1987 <tt>bayes_update_params</tt> and <tt>learn_params</tt> will give the
|
wolffd@0
|
1988 same result.)
|
wolffd@0
|
1989
|
wolffd@0
|
1990
|
wolffd@0
|
1991
|
wolffd@0
|
1992
|
wolffd@0
|
1993 <p>
|
wolffd@0
|
1994 We can compute the same result sequentially (on-line) as follows.
|
wolffd@0
|
1995 <pre>
|
wolffd@0
|
1996 LL = 0;
|
wolffd@0
|
1997 for m=1:nsamples
|
wolffd@0
|
1998 LL = LL + log_marg_lik_complete(bnet, cases(:,m));
|
wolffd@0
|
1999 bnet = bayes_update_params(bnet, cases(:,m));
|
wolffd@0
|
2000 end
|
wolffd@0
|
2001 </pre>
|
wolffd@0
|
2002
|
wolffd@0
|
2003 The file <tt>BNT/examples/static/StructLearn/model_select1</tt> has an example of
|
wolffd@0
|
2004 sequential model selection which uses the same idea.
|
wolffd@0
|
2005 We generate data from the model A->B
|
wolffd@0
|
2006 and compute the posterior prob of all 3 dags on 2 nodes:
|
wolffd@0
|
2007 (1) A B, (2) A <- B , (3) A -> B
|
wolffd@0
|
2008 Models 2 and 3 are <a href="#markov_equiv">Markov equivalent</a>, and therefore indistinguishable from
|
wolffd@0
|
2009 observational data alone, so we expect their posteriors to be the same
|
wolffd@0
|
2010 (assuming a prior which satisfies likelihood equivalence).
|
wolffd@0
|
2011 If we use random parameters, the "true" model only gets a higher posterior after 2000 trials!
|
wolffd@0
|
2012 However, if we make B a noisy NOT gate, the true model "wins" after 12
|
wolffd@0
|
2013 trials, as shown below (red = model 1, blue/green (superimposed)
|
wolffd@0
|
2014 represents models 2/3).
|
wolffd@0
|
2015 <p>
|
wolffd@0
|
2016 <img src="Figures/model_select.png">
|
wolffd@0
|
2017 <p>
|
wolffd@0
|
2018 The use of marginal likelihood for model selection is discussed in
|
wolffd@0
|
2019 greater detail in the
|
wolffd@0
|
2020 section on <a href="structure_learning">structure learning</a>.
|
wolffd@0
|
2021
|
wolffd@0
|
2022
|
wolffd@0
|
2023
|
wolffd@0
|
2024
|
wolffd@0
|
2025 <h2><a name="em">Maximum likelihood parameter estimation with missing values</h2>
|
wolffd@0
|
2026
|
wolffd@0
|
2027 Now we consider learning when some values are not observed.
|
wolffd@0
|
2028 Let us randomly hide half the values generated from the water
|
wolffd@0
|
2029 sprinkler example.
|
wolffd@0
|
2030 <pre>
|
wolffd@0
|
2031 samples2 = samples;
|
wolffd@0
|
2032 hide = rand(N, nsamples) > 0.5;
|
wolffd@0
|
2033 [I,J]=find(hide);
|
wolffd@0
|
2034 for k=1:length(I)
|
wolffd@0
|
2035 samples2{I(k), J(k)} = [];
|
wolffd@0
|
2036 end
|
wolffd@0
|
2037 </pre>
|
wolffd@0
|
2038 samples2{i,l} is the value of node i in training case l, or [] if unobserved.
|
wolffd@0
|
2039 <p>
|
wolffd@0
|
2040 Now we will compute the MLEs using the EM algorithm.
|
wolffd@0
|
2041 We need to use an inference algorithm to compute the expected
|
wolffd@0
|
2042 sufficient statistics in the E step; the M (maximization) step is as
|
wolffd@0
|
2043 above.
|
wolffd@0
|
2044 <pre>
|
wolffd@0
|
2045 engine2 = jtree_inf_engine(bnet2);
|
wolffd@0
|
2046 max_iter = 10;
|
wolffd@0
|
2047 [bnet4, LLtrace] = learn_params_em(engine2, samples2, max_iter);
|
wolffd@0
|
2048 </pre>
|
wolffd@0
|
2049 LLtrace(i) is the log-likelihood at iteration i. We can plot this as
|
wolffd@0
|
2050 follows:
|
wolffd@0
|
2051 <pre>
|
wolffd@0
|
2052 plot(LLtrace, 'x-')
|
wolffd@0
|
2053 </pre>
|
wolffd@0
|
2054 Let's display the results after 10 iterations of EM.
|
wolffd@0
|
2055 <pre>
|
wolffd@0
|
2056 celldisp(CPT4)
|
wolffd@0
|
2057 CPT4{1} =
|
wolffd@0
|
2058 0.6616
|
wolffd@0
|
2059 0.3384
|
wolffd@0
|
2060 CPT4{2} =
|
wolffd@0
|
2061 0.6510 0.3490
|
wolffd@0
|
2062 0.8751 0.1249
|
wolffd@0
|
2063 CPT4{3} =
|
wolffd@0
|
2064 0.8366 0.1634
|
wolffd@0
|
2065 0.0197 0.9803
|
wolffd@0
|
2066 CPT4{4} =
|
wolffd@0
|
2067 (:,:,1) =
|
wolffd@0
|
2068 0.8276 0.0546
|
wolffd@0
|
2069 0.5452 0.1658
|
wolffd@0
|
2070 (:,:,2) =
|
wolffd@0
|
2071 0.1724 0.9454
|
wolffd@0
|
2072 0.4548 0.8342
|
wolffd@0
|
2073 </pre>
|
wolffd@0
|
2074 We can get improved performance by using one or more of the following
|
wolffd@0
|
2075 methods:
|
wolffd@0
|
2076 <ul>
|
wolffd@0
|
2077 <li> Increasing the size of the training set.
|
wolffd@0
|
2078 <li> Decreasing the amount of hidden data.
|
wolffd@0
|
2079 <li> Running EM for longer.
|
wolffd@0
|
2080 <li> Using informative priors.
|
wolffd@0
|
2081 <li> Initialising EM from multiple starting points.
|
wolffd@0
|
2082 </ul>
|
wolffd@0
|
2083
|
wolffd@0
|
2084 Click <a href="#gaussian">here</a> for a discussion of learning
|
wolffd@0
|
2085 Gaussians, which can cause numerical problems.
|
wolffd@0
|
2086 <p>
|
wolffd@0
|
2087 For a more complete example of learning with EM,
|
wolffd@0
|
2088 see the script BNT/examples/static/learn1.m.
|
wolffd@0
|
2089
|
wolffd@0
|
2090 <h2><a name="tying">Parameter tying</h2>
|
wolffd@0
|
2091
|
wolffd@0
|
2092 In networks with repeated structure (e.g., chains and grids), it is
|
wolffd@0
|
2093 common to assume that the parameters are the same at every node. This
|
wolffd@0
|
2094 is called parameter tying, and reduces the amount of data needed for
|
wolffd@0
|
2095 learning.
|
wolffd@0
|
2096 <p>
|
wolffd@0
|
2097 When we have tied parameters, there is no longer a one-to-one
|
wolffd@0
|
2098 correspondence between nodes and CPDs.
|
wolffd@0
|
2099 Rather, each CPD species the parameters for a whole equivalence class
|
wolffd@0
|
2100 of nodes.
|
wolffd@0
|
2101 It is easiest to see this by example.
|
wolffd@0
|
2102 Consider the following <a href="usage_dbn.html#hmm">hidden Markov
|
wolffd@0
|
2103 model (HMM)</a>
|
wolffd@0
|
2104 <p>
|
wolffd@0
|
2105 <img src="Figures/hmm3.gif">
|
wolffd@0
|
2106 <p>
|
wolffd@0
|
2107 <!--
|
wolffd@0
|
2108 We can create this graph structure, assuming we have T time-slices,
|
wolffd@0
|
2109 as follows.
|
wolffd@0
|
2110 (We number the nodes as shown in the figure, but we could equally well
|
wolffd@0
|
2111 number the hidden nodes 1:T, and the observed nodes T+1:2T.)
|
wolffd@0
|
2112 <pre>
|
wolffd@0
|
2113 N = 2*T;
|
wolffd@0
|
2114 dag = zeros(N);
|
wolffd@0
|
2115 hnodes = 1:2:2*T;
|
wolffd@0
|
2116 for i=1:T-1
|
wolffd@0
|
2117 dag(hnodes(i), hnodes(i+1))=1;
|
wolffd@0
|
2118 end
|
wolffd@0
|
2119 onodes = 2:2:2*T;
|
wolffd@0
|
2120 for i=1:T
|
wolffd@0
|
2121 dag(hnodes(i), onodes(i)) = 1;
|
wolffd@0
|
2122 end
|
wolffd@0
|
2123 </pre>
|
wolffd@0
|
2124 <p>
|
wolffd@0
|
2125 The hidden nodes are always discrete, and have Q possible values each,
|
wolffd@0
|
2126 but the observed nodes can be discrete or continuous, and have O possible values/length.
|
wolffd@0
|
2127 <pre>
|
wolffd@0
|
2128 if cts_obs
|
wolffd@0
|
2129 dnodes = hnodes;
|
wolffd@0
|
2130 else
|
wolffd@0
|
2131 dnodes = 1:N;
|
wolffd@0
|
2132 end
|
wolffd@0
|
2133 ns = ones(1,N);
|
wolffd@0
|
2134 ns(hnodes) = Q;
|
wolffd@0
|
2135 ns(onodes) = O;
|
wolffd@0
|
2136 </pre>
|
wolffd@0
|
2137 -->
|
wolffd@0
|
2138 When HMMs are used for semi-infinite processes like speech recognition,
|
wolffd@0
|
2139 we assume the transition matrix
|
wolffd@0
|
2140 P(H(t+1)|H(t)) is the same for all t; this is called a time-invariant
|
wolffd@0
|
2141 or homogenous Markov chain.
|
wolffd@0
|
2142 Hence hidden nodes 2, 3, ..., T
|
wolffd@0
|
2143 are all in the same equivalence class, say class Hclass.
|
wolffd@0
|
2144 Similarly, the observation matrix P(O(t)|H(t)) is assumed to be the
|
wolffd@0
|
2145 same for all t, so the observed nodes are all in the same equivalence
|
wolffd@0
|
2146 class, say class Oclass.
|
wolffd@0
|
2147 Finally, the prior term P(H(1)) is in a class all by itself, say class
|
wolffd@0
|
2148 H1class.
|
wolffd@0
|
2149 This is illustrated below, where we explicitly represent the
|
wolffd@0
|
2150 parameters as random variables (dotted nodes).
|
wolffd@0
|
2151 <p>
|
wolffd@0
|
2152 <img src="Figures/hmm4_params.gif">
|
wolffd@0
|
2153 <p>
|
wolffd@0
|
2154 In BNT, we cannot represent parameters as random variables (nodes).
|
wolffd@0
|
2155 Instead, we "hide" the
|
wolffd@0
|
2156 parameters inside one CPD for each equivalence class,
|
wolffd@0
|
2157 and then specify that the other CPDs should share these parameters, as
|
wolffd@0
|
2158 follows.
|
wolffd@0
|
2159 <pre>
|
wolffd@0
|
2160 hnodes = 1:2:2*T;
|
wolffd@0
|
2161 onodes = 2:2:2*T;
|
wolffd@0
|
2162 H1class = 1; Hclass = 2; Oclass = 3;
|
wolffd@0
|
2163 eclass = ones(1,N);
|
wolffd@0
|
2164 eclass(hnodes(2:end)) = Hclass;
|
wolffd@0
|
2165 eclass(hnodes(1)) = H1class;
|
wolffd@0
|
2166 eclass(onodes) = Oclass;
|
wolffd@0
|
2167 % create dag and ns in the usual way
|
wolffd@0
|
2168 bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'equiv_class', eclass);
|
wolffd@0
|
2169 </pre>
|
wolffd@0
|
2170 Finally, we define the parameters for each equivalence class:
|
wolffd@0
|
2171 <pre>
|
wolffd@0
|
2172 bnet.CPD{H1class} = tabular_CPD(bnet, hnodes(1)); % prior
|
wolffd@0
|
2173 bnet.CPD{Hclass} = tabular_CPD(bnet, hnodes(2)); % transition matrix
|
wolffd@0
|
2174 if cts_obs
|
wolffd@0
|
2175 bnet.CPD{Oclass} = gaussian_CPD(bnet, onodes(1));
|
wolffd@0
|
2176 else
|
wolffd@0
|
2177 bnet.CPD{Oclass} = tabular_CPD(bnet, onodes(1));
|
wolffd@0
|
2178 end
|
wolffd@0
|
2179 </pre>
|
wolffd@0
|
2180 In general, if bnet.CPD{e} = xxx_CPD(bnet, j), then j should be a
|
wolffd@0
|
2181 member of e's equivalence class; that is, it is not always the case
|
wolffd@0
|
2182 that e == j. You can use bnet.rep_of_eclass(e) to return the
|
wolffd@0
|
2183 representative of equivalence class e.
|
wolffd@0
|
2184 BNT will look up the parents of j to determine the size
|
wolffd@0
|
2185 of the CPT to use. It assumes that this is the same for all members of
|
wolffd@0
|
2186 the equivalence class.
|
wolffd@0
|
2187 Click <a href="param_tieing.html">here</a> for
|
wolffd@0
|
2188 a more complex example of parameter tying.
|
wolffd@0
|
2189 <p>
|
wolffd@0
|
2190 Note:
|
wolffd@0
|
2191 Normally one would define an HMM as a
|
wolffd@0
|
2192 <a href = "usage_dbn.html">Dynamic Bayes Net</a>
|
wolffd@0
|
2193 (see the function BNT/examples/dynamic/mk_chmm.m).
|
wolffd@0
|
2194 However, one can define an HMM as a static BN using the function
|
wolffd@0
|
2195 BNT/examples/static/Models/mk_hmm_bnet.m.
|
wolffd@0
|
2196
|
wolffd@0
|
2197
|
wolffd@0
|
2198
|
wolffd@0
|
2199 <h1><a name="structure_learning">Structure learning</h1>
|
wolffd@0
|
2200
|
wolffd@0
|
2201 Update (9/29/03):
|
wolffd@0
|
2202 Phillipe LeRay is developing some additional structure learning code
|
wolffd@0
|
2203 on top of BNT. Click
|
wolffd@0
|
2204 <a href="http://banquiseasi.insa-rouen.fr/projects/bnt-slp/">
|
wolffd@0
|
2205 here</a>
|
wolffd@0
|
2206 for details.
|
wolffd@0
|
2207
|
wolffd@0
|
2208 <p>
|
wolffd@0
|
2209
|
wolffd@0
|
2210 There are two very different approaches to structure learning:
|
wolffd@0
|
2211 constraint-based and search-and-score.
|
wolffd@0
|
2212 In the <a href="#constraint">constraint-based approach</a>,
|
wolffd@0
|
2213 we start with a fully connected graph, and remove edges if certain
|
wolffd@0
|
2214 conditional independencies are measured in the data.
|
wolffd@0
|
2215 This has the disadvantage that repeated independence tests lose
|
wolffd@0
|
2216 statistical power.
|
wolffd@0
|
2217 <p>
|
wolffd@0
|
2218 In the more popular search-and-score approach,
|
wolffd@0
|
2219 we perform a search through the space of possible DAGs, and either
|
wolffd@0
|
2220 return the best one found (a point estimate), or return a sample of the
|
wolffd@0
|
2221 models found (an approximation to the Bayesian posterior).
|
wolffd@0
|
2222 <p>
|
wolffd@0
|
2223 The number of DAGs as a function of the number of
|
wolffd@0
|
2224 nodes, G(n), is super-exponential in n,
|
wolffd@0
|
2225 and is given by the following recurrence
|
wolffd@0
|
2226 <!--(where R(i)=G(n)):-->
|
wolffd@0
|
2227 <p>
|
wolffd@0
|
2228 <center>
|
wolffd@0
|
2229 <IMG SRC="numDAGsEqn2.png">
|
wolffd@0
|
2230 </center>
|
wolffd@0
|
2231 <p>
|
wolffd@0
|
2232 The first few values
|
wolffd@0
|
2233 are shown below.
|
wolffd@0
|
2234
|
wolffd@0
|
2235 <table>
|
wolffd@0
|
2236 <tr> <th>n</th> <th align=left>G(n)</th> </tr>
|
wolffd@0
|
2237 <tr> <td>1</td> <td>1</td> </tr>
|
wolffd@0
|
2238 <tr> <td>2</td> <td>3</td> </tr>
|
wolffd@0
|
2239 <tr> <td>3</td> <td>25</td> </tr>
|
wolffd@0
|
2240 <tr> <td>4</td> <td>543</td> </tr>
|
wolffd@0
|
2241 <tr> <td>5</td> <td>29,281</td> </tr>
|
wolffd@0
|
2242 <tr> <td>6</td> <td>3,781,503</td> </tr>
|
wolffd@0
|
2243 <tr> <td>7</td> <td>1.1 x 10^9</td> </tr>
|
wolffd@0
|
2244 <tr> <td>8</td> <td>7.8 x 10^11</td> </tr>
|
wolffd@0
|
2245 <tr> <td>9</td> <td>1.2 x 10^15</td> </tr>
|
wolffd@0
|
2246 <tr> <td>10</td> <td>4.2 x 10^18</td> </tr>
|
wolffd@0
|
2247 </table>
|
wolffd@0
|
2248
|
wolffd@0
|
2249 Since the number of DAGs is super-exponential in the number of nodes,
|
wolffd@0
|
2250 we cannot exhaustively search the space, so we either use a local
|
wolffd@0
|
2251 search algorithm (e.g., greedy hill climbining, perhaps with multiple
|
wolffd@0
|
2252 restarts) or a global search algorithm (e.g., Markov Chain Monte
|
wolffd@0
|
2253 Carlo).
|
wolffd@0
|
2254 <p>
|
wolffd@0
|
2255 If we know a total ordering on the nodes,
|
wolffd@0
|
2256 finding the best structure amounts to picking the best set of parents
|
wolffd@0
|
2257 for each node independently.
|
wolffd@0
|
2258 This is what the K2 algorithm does.
|
wolffd@0
|
2259 If the ordering is unknown, we can search over orderings,
|
wolffd@0
|
2260 which is more efficient than searching over DAGs (Koller and Friedman, 2000).
|
wolffd@0
|
2261 <p>
|
wolffd@0
|
2262 In addition to the search procedure, we must specify the scoring
|
wolffd@0
|
2263 function. There are two popular choices. The Bayesian score integrates
|
wolffd@0
|
2264 out the parameters, i.e., it is the marginal likelihood of the model.
|
wolffd@0
|
2265 The BIC (Bayesian Information Criterion) is defined as
|
wolffd@0
|
2266 log P(D|theta_hat) - 0.5*d*log(N), where D is the data, theta_hat is
|
wolffd@0
|
2267 the ML estimate of the parameters, d is the number of parameters, and
|
wolffd@0
|
2268 N is the number of data cases.
|
wolffd@0
|
2269 The BIC method has the advantage of not requiring a prior.
|
wolffd@0
|
2270 <p>
|
wolffd@0
|
2271 BIC can be derived as a large sample
|
wolffd@0
|
2272 approximation to the marginal likelihood.
|
wolffd@0
|
2273 (It is also equal to the Minimum Description Length of a model.)
|
wolffd@0
|
2274 However, in practice, the sample size does not need to be very large
|
wolffd@0
|
2275 for the approximation to be good.
|
wolffd@0
|
2276 For example, in the figure below, we plot the ratio between the log marginal likelihood
|
wolffd@0
|
2277 and the BIC score against data-set size; we see that the ratio rapidly
|
wolffd@0
|
2278 approaches 1, especially for non-informative priors.
|
wolffd@0
|
2279 (This plot was generated by the file BNT/examples/static/bic1.m. It
|
wolffd@0
|
2280 uses the water sprinkler BN with BDeu Dirichlet priors with different
|
wolffd@0
|
2281 equivalent sample sizes.)
|
wolffd@0
|
2282
|
wolffd@0
|
2283 <p>
|
wolffd@0
|
2284 <center>
|
wolffd@0
|
2285 <IMG SRC="Figures/bic.png">
|
wolffd@0
|
2286 </center>
|
wolffd@0
|
2287 <p>
|
wolffd@0
|
2288
|
wolffd@0
|
2289 <p>
|
wolffd@0
|
2290 As with parameter learning, handling missing data/ hidden variables is
|
wolffd@0
|
2291 much harder than the fully observed case.
|
wolffd@0
|
2292 The structure learning routines in BNT can therefore be classified into 4
|
wolffd@0
|
2293 types, analogously to the parameter learning case.
|
wolffd@0
|
2294 <p>
|
wolffd@0
|
2295
|
wolffd@0
|
2296 <TABLE BORDER>
|
wolffd@0
|
2297 <tr>
|
wolffd@0
|
2298 <TH></TH>
|
wolffd@0
|
2299 <th>Full obs</th>
|
wolffd@0
|
2300 <th>Partial obs</th>
|
wolffd@0
|
2301 </tr>
|
wolffd@0
|
2302 <tr>
|
wolffd@0
|
2303 <th>Point</th>
|
wolffd@0
|
2304 <td><tt>learn_struct_K2</tt> <br>
|
wolffd@0
|
2305 <!-- <tt>learn_struct_hill_climb</tt></td> -->
|
wolffd@0
|
2306 <td><tt>not yet supported</tt></td>
|
wolffd@0
|
2307 </tr>
|
wolffd@0
|
2308 <tr>
|
wolffd@0
|
2309 <th>Bayes</th>
|
wolffd@0
|
2310 <td><tt>learn_struct_mcmc</tt></td>
|
wolffd@0
|
2311 <td>not yet supported</td>
|
wolffd@0
|
2312 </tr>
|
wolffd@0
|
2313 </table>
|
wolffd@0
|
2314
|
wolffd@0
|
2315
|
wolffd@0
|
2316 <h2><a name="markov_equiv">Markov equivalence</h2>
|
wolffd@0
|
2317
|
wolffd@0
|
2318 If two DAGs encode the same conditional independencies, they are
|
wolffd@0
|
2319 called Markov equivalent. The set of all DAGs can be paritioned into
|
wolffd@0
|
2320 Markov equivalence classes. Graphs within the same class can
|
wolffd@0
|
2321 have
|
wolffd@0
|
2322 the direction of some of their arcs reversed without changing any of
|
wolffd@0
|
2323 the CI relationships.
|
wolffd@0
|
2324 Each class can be represented by a PDAG
|
wolffd@0
|
2325 (partially directed acyclic graph) called an essential graph or
|
wolffd@0
|
2326 pattern. This specifies which edges must be oriented in a certain
|
wolffd@0
|
2327 direction, and which may be reversed.
|
wolffd@0
|
2328
|
wolffd@0
|
2329 <p>
|
wolffd@0
|
2330 When learning graph structure from observational data,
|
wolffd@0
|
2331 the best one can hope to do is to identify the model up to Markov
|
wolffd@0
|
2332 equivalence. To distinguish amongst graphs within the same equivalence
|
wolffd@0
|
2333 class, one needs interventional data: see the discussion on <a
|
wolffd@0
|
2334 href="#active">active learning</a> below.
|
wolffd@0
|
2335
|
wolffd@0
|
2336
|
wolffd@0
|
2337
|
wolffd@0
|
2338 <h2><a name="enumerate">Exhaustive search</h2>
|
wolffd@0
|
2339
|
wolffd@0
|
2340 The brute-force approach to structure learning is to enumerate all
|
wolffd@0
|
2341 possible DAGs, and score each one. This provides a "gold standard"
|
wolffd@0
|
2342 with which to compare other algorithms. We can do this as follows.
|
wolffd@0
|
2343 <pre>
|
wolffd@0
|
2344 dags = mk_all_dags(N);
|
wolffd@0
|
2345 score = score_dags(data, ns, dags);
|
wolffd@0
|
2346 </pre>
|
wolffd@0
|
2347 where data(i,m) is the value of node i in case m,
|
wolffd@0
|
2348 and ns(i) is the size of node i.
|
wolffd@0
|
2349 If the DAGs have a lot of families in common, we can cache the sufficient statistics,
|
wolffd@0
|
2350 making this potentially more efficient than scoring the DAGs one at a time.
|
wolffd@0
|
2351 (Caching is not currently implemented, however.)
|
wolffd@0
|
2352 <p>
|
wolffd@0
|
2353 By default, we use the Bayesian scoring metric, and assume CPDs are
|
wolffd@0
|
2354 represented by tables with BDeu(1) priors.
|
wolffd@0
|
2355 We can override these defaults as follows.
|
wolffd@0
|
2356 If we want to use uniform priors, we can say
|
wolffd@0
|
2357 <pre>
|
wolffd@0
|
2358 params = cell(1,N);
|
wolffd@0
|
2359 for i=1:N
|
wolffd@0
|
2360 params{i} = {'prior', 'unif'};
|
wolffd@0
|
2361 end
|
wolffd@0
|
2362 score = score_dags(data, ns, dags, 'params', params);
|
wolffd@0
|
2363 </pre>
|
wolffd@0
|
2364 params{i} is a cell-array, containing optional arguments that are
|
wolffd@0
|
2365 passed to the constructor for CPD i.
|
wolffd@0
|
2366 <p>
|
wolffd@0
|
2367 Now suppose we want to use different node types, e.g.,
|
wolffd@0
|
2368 Suppose nodes 1 and 2 are Gaussian, and nodes 3 and 4 softmax (both
|
wolffd@0
|
2369 these CPDs can support discrete and continuous parents, which is
|
wolffd@0
|
2370 necessary since all other nodes will be considered as parents).
|
wolffd@0
|
2371 The Bayesian scoring metric currently only works for tabular CPDs, so
|
wolffd@0
|
2372 we will use BIC:
|
wolffd@0
|
2373 <pre>
|
wolffd@0
|
2374 score = score_dags(data, ns, dags, 'discrete', [3 4], 'params', [],
|
wolffd@0
|
2375 'type', {'gaussian', 'gaussian', 'softmax', softmax'}, 'scoring_fn', 'bic')
|
wolffd@0
|
2376 </pre>
|
wolffd@0
|
2377 In practice, one can't enumerate all possible DAGs for N > 5,
|
wolffd@0
|
2378 but one can evaluate any reasonably-sized set of hypotheses in this
|
wolffd@0
|
2379 way (e.g., nearest neighbors of your current best guess).
|
wolffd@0
|
2380 Think of this as "computer assisted model refinement" as opposed to de
|
wolffd@0
|
2381 novo learning.
|
wolffd@0
|
2382
|
wolffd@0
|
2383
|
wolffd@0
|
2384 <h2><a name="K2">K2</h2>
|
wolffd@0
|
2385
|
wolffd@0
|
2386 The K2 algorithm (Cooper and Herskovits, 1992) is a greedy search algorithm that works as follows.
|
wolffd@0
|
2387 Initially each node has no parents. It then adds incrementally that parent whose addition most
|
wolffd@0
|
2388 increases the score of the resulting structure. When the addition of no single
|
wolffd@0
|
2389 parent can increase the score, it stops adding parents to the node.
|
wolffd@0
|
2390 Since we are using a fixed ordering, we do not need to check for
|
wolffd@0
|
2391 cycles, and can choose the parents for each node independently.
|
wolffd@0
|
2392 <p>
|
wolffd@0
|
2393 The original paper used the Bayesian scoring
|
wolffd@0
|
2394 metric with tabular CPDs and Dirichlet priors.
|
wolffd@0
|
2395 BNT generalizes this to allow any kind of CPD, and either the Bayesian
|
wolffd@0
|
2396 scoring metric or BIC, as in the example <a href="#enumerate">above</a>.
|
wolffd@0
|
2397 In addition, you can specify
|
wolffd@0
|
2398 an optional upper bound on the number of parents for each node.
|
wolffd@0
|
2399 The file BNT/examples/static/k2demo1.m gives an example of how to use K2.
|
wolffd@0
|
2400 We use the water sprinkler network and sample 100 cases from it as before.
|
wolffd@0
|
2401 Then we see how much data it takes to recover the generating structure:
|
wolffd@0
|
2402 <pre>
|
wolffd@0
|
2403 order = [C S R W];
|
wolffd@0
|
2404 max_fan_in = 2;
|
wolffd@0
|
2405 sz = 5:5:100;
|
wolffd@0
|
2406 for i=1:length(sz)
|
wolffd@0
|
2407 dag2 = learn_struct_K2(data(:,1:sz(i)), node_sizes, order, 'max_fan_in', max_fan_in);
|
wolffd@0
|
2408 correct(i) = isequal(dag, dag2);
|
wolffd@0
|
2409 end
|
wolffd@0
|
2410 </pre>
|
wolffd@0
|
2411 Here are the results.
|
wolffd@0
|
2412 <pre>
|
wolffd@0
|
2413 correct =
|
wolffd@0
|
2414 Columns 1 through 12
|
wolffd@0
|
2415 0 0 0 0 0 0 0 1 0 1 1 1
|
wolffd@0
|
2416 Columns 13 through 20
|
wolffd@0
|
2417 1 1 1 1 1 1 1 1
|
wolffd@0
|
2418 </pre>
|
wolffd@0
|
2419 So we see it takes about sz(10)=50 cases. (BIC behaves similarly,
|
wolffd@0
|
2420 showing that the prior doesn't matter too much.)
|
wolffd@0
|
2421 In general, we cannot hope to recover the "true" generating structure,
|
wolffd@0
|
2422 only one that is in its <a href="#markov_equiv">Markov equivalence
|
wolffd@0
|
2423 class</a>.
|
wolffd@0
|
2424
|
wolffd@0
|
2425
|
wolffd@0
|
2426 <h2><a name="hill_climb">Hill-climbing</h2>
|
wolffd@0
|
2427
|
wolffd@0
|
2428 Hill-climbing starts at a specific point in space,
|
wolffd@0
|
2429 considers all nearest neighbors, and moves to the neighbor
|
wolffd@0
|
2430 that has the highest score; if no neighbors have higher
|
wolffd@0
|
2431 score than the current point (i.e., we have reached a local maximum),
|
wolffd@0
|
2432 the algorithm stops. One can then restart in another part of the space.
|
wolffd@0
|
2433 <p>
|
wolffd@0
|
2434 A common definition of "neighbor" is all graphs that can be
|
wolffd@0
|
2435 generated from the current graph by adding, deleting or reversing a
|
wolffd@0
|
2436 single arc, subject to the acyclicity constraint.
|
wolffd@0
|
2437 Other neighborhoods are possible: see
|
wolffd@0
|
2438 <a href="http://research.microsoft.com/~dmax/publications/jmlr02.pdf">
|
wolffd@0
|
2439 Optimal Structure Identification with Greedy Search</a>, Max
|
wolffd@0
|
2440 Chickering, JMLR 2002.
|
wolffd@0
|
2441
|
wolffd@0
|
2442 <!--
|
wolffd@0
|
2443 Note: This algorithm is currently (Feb '02) being implemented by Qian
|
wolffd@0
|
2444 Diao.
|
wolffd@0
|
2445 -->
|
wolffd@0
|
2446
|
wolffd@0
|
2447
|
wolffd@0
|
2448 <h2><a name="mcmc">MCMC</h2>
|
wolffd@0
|
2449
|
wolffd@0
|
2450 We can use a Markov Chain Monte Carlo (MCMC) algorithm called
|
wolffd@0
|
2451 Metropolis-Hastings (MH) to search the space of all
|
wolffd@0
|
2452 DAGs.
|
wolffd@0
|
2453 The standard proposal distribution is to consider moving to all
|
wolffd@0
|
2454 nearest neighbors in the sense defined <a href="#hill_climb">above</a>.
|
wolffd@0
|
2455 <p>
|
wolffd@0
|
2456 The function can be called
|
wolffd@0
|
2457 as in the following example.
|
wolffd@0
|
2458 <pre>
|
wolffd@0
|
2459 [sampled_graphs, accept_ratio] = learn_struct_mcmc(data, ns, 'nsamples', 100, 'burnin', 10);
|
wolffd@0
|
2460 </pre>
|
wolffd@0
|
2461 We can convert our set of sampled graphs to a histogram
|
wolffd@0
|
2462 (empirical posterior over all the DAGs) thus
|
wolffd@0
|
2463 <pre>
|
wolffd@0
|
2464 all_dags = mk_all_dags(N);
|
wolffd@0
|
2465 mcmc_post = mcmc_sample_to_hist(sampled_graphs, all_dags);
|
wolffd@0
|
2466 </pre>
|
wolffd@0
|
2467 To see how well this performs, let us compute the exact posterior exhaustively.
|
wolffd@0
|
2468 <p>
|
wolffd@0
|
2469 <pre>
|
wolffd@0
|
2470 score = score_dags(data, ns, all_dags);
|
wolffd@0
|
2471 post = normalise(exp(score)); % assuming uniform structural prior
|
wolffd@0
|
2472 </pre>
|
wolffd@0
|
2473 We plot the results below.
|
wolffd@0
|
2474 (The data set was 100 samples drawn from a random 4 node bnet; see the
|
wolffd@0
|
2475 file BNT/examples/static/mcmc1.)
|
wolffd@0
|
2476 <pre>
|
wolffd@0
|
2477 subplot(2,1,1)
|
wolffd@0
|
2478 bar(post)
|
wolffd@0
|
2479 subplot(2,1,2)
|
wolffd@0
|
2480 bar(mcmc_post)
|
wolffd@0
|
2481 </pre>
|
wolffd@0
|
2482 <img src="Figures/mcmc_post.jpg" width="800" height="500">
|
wolffd@0
|
2483 <p>
|
wolffd@0
|
2484 We can also plot the acceptance ratio versus number of MCMC steps,
|
wolffd@0
|
2485 as a crude convergence diagnostic.
|
wolffd@0
|
2486 <pre>
|
wolffd@0
|
2487 clf
|
wolffd@0
|
2488 plot(accept_ratio)
|
wolffd@0
|
2489 </pre>
|
wolffd@0
|
2490 <img src="Figures/mcmc_accept.jpg" width="800" height="300">
|
wolffd@0
|
2491 <p>
|
wolffd@0
|
2492 Even though the number of samples needed by MCMC is theoretically
|
wolffd@0
|
2493 polynomial (not exponential) in the dimensionality of the search space, in practice it has been
|
wolffd@0
|
2494 found that MCMC does not converge in reasonable time for graphs with
|
wolffd@0
|
2495 more than about 10 nodes.
|
wolffd@0
|
2496
|
wolffd@0
|
2497
|
wolffd@0
|
2498
|
wolffd@0
|
2499
|
wolffd@0
|
2500 <h2><a name="active">Active structure learning</h2>
|
wolffd@0
|
2501
|
wolffd@0
|
2502 As was mentioned <a href="#markov_equiv">above</a>,
|
wolffd@0
|
2503 one can only learn a DAG up to Markov equivalence, even given infinite data.
|
wolffd@0
|
2504 If one is interested in learning the structure of a causal network,
|
wolffd@0
|
2505 one needs interventional data.
|
wolffd@0
|
2506 (By "intervention" we mean forcing a node to take on a specific value,
|
wolffd@0
|
2507 thereby effectively severing its incoming arcs.)
|
wolffd@0
|
2508 <p>
|
wolffd@0
|
2509 Most of the scoring functions accept an optional argument
|
wolffd@0
|
2510 that specifies whether a node was observed to have a certain value, or
|
wolffd@0
|
2511 was forced to have that value: we set clamped(i,m)=1 if node i was
|
wolffd@0
|
2512 forced in training case m. e.g., see the file
|
wolffd@0
|
2513 BNT/examples/static/cooper_yoo.
|
wolffd@0
|
2514 <p>
|
wolffd@0
|
2515 An interesting question is to decide which interventions to perform
|
wolffd@0
|
2516 (c.f., design of experiments). For details, see the following tech
|
wolffd@0
|
2517 report
|
wolffd@0
|
2518 <ul>
|
wolffd@0
|
2519 <li> <a href = "../../Papers/alearn.ps.gz">
|
wolffd@0
|
2520 Active learning of causal Bayes net structure</a>, Kevin Murphy, March
|
wolffd@0
|
2521 2001.
|
wolffd@0
|
2522 </ul>
|
wolffd@0
|
2523
|
wolffd@0
|
2524
|
wolffd@0
|
2525 <h2><a name="struct_em">Structural EM</h2>
|
wolffd@0
|
2526
|
wolffd@0
|
2527 Computing the Bayesian score when there is partial observability is
|
wolffd@0
|
2528 computationally challenging, because the parameter posterior becomes
|
wolffd@0
|
2529 multimodal (the hidden nodes induce a mixture distribution).
|
wolffd@0
|
2530 One therefore needs to use approximations such as BIC.
|
wolffd@0
|
2531 Unfortunately, search algorithms are still expensive, because we need
|
wolffd@0
|
2532 to run EM at each step to compute the MLE, which is needed to compute
|
wolffd@0
|
2533 the score of each model. An alternative approach is
|
wolffd@0
|
2534 to do the local search steps inside of the M step of EM, which is more
|
wolffd@0
|
2535 efficient since the data has been "filled in" - this is
|
wolffd@0
|
2536 called the structural EM algorithm (Friedman 1997), and provably
|
wolffd@0
|
2537 converges to a local maximum of the BIC score.
|
wolffd@0
|
2538 <p>
|
wolffd@0
|
2539 Wei Hu has implemented SEM for discrete nodes.
|
wolffd@0
|
2540 You can download his package from
|
wolffd@0
|
2541 <a href="../SEM.zip">here</a>.
|
wolffd@0
|
2542 Please address all questions about this code to
|
wolffd@0
|
2543 wei.hu@intel.com.
|
wolffd@0
|
2544 See also <a href="#phl">Phl's implementation of SEM</a>.
|
wolffd@0
|
2545
|
wolffd@0
|
2546 <!--
|
wolffd@0
|
2547 <h2><a name="reveal">REVEAL algorithm</h2>
|
wolffd@0
|
2548
|
wolffd@0
|
2549 A simple way to learn the structure of a fully observed, discrete,
|
wolffd@0
|
2550 factored DBN from a time series is described <a
|
wolffd@0
|
2551 href="usage_dbn.html#struct_learn">here</a>.
|
wolffd@0
|
2552 -->
|
wolffd@0
|
2553
|
wolffd@0
|
2554
|
wolffd@0
|
2555 <h2><a name="graphdraw">Visualizing the graph</h2>
|
wolffd@0
|
2556
|
wolffd@0
|
2557 Click <a href="graphviz.html">here</a> for more information
|
wolffd@0
|
2558 on graph visualization.
|
wolffd@0
|
2559
|
wolffd@0
|
2560 <h2><a name = "constraint">Constraint-based methods</h2>
|
wolffd@0
|
2561
|
wolffd@0
|
2562 The IC algorithm (Pearl and Verma, 1991),
|
wolffd@0
|
2563 and the faster, but otherwise equivalent, PC algorithm (Spirtes, Glymour, and Scheines 1993),
|
wolffd@0
|
2564 computes many conditional independence tests,
|
wolffd@0
|
2565 and combines these constraints into a
|
wolffd@0
|
2566 PDAG to represent the whole
|
wolffd@0
|
2567 <a href="#markov_equiv">Markov equivalence class</a>.
|
wolffd@0
|
2568 <p>
|
wolffd@0
|
2569 IC*/FCI extend IC/PC to handle latent variables: see <a href="#ic_star">below</a>.
|
wolffd@0
|
2570 (IC stands for inductive causation; PC stands for Peter and Clark,
|
wolffd@0
|
2571 the first names of Spirtes and Glymour; FCI stands for fast causal
|
wolffd@0
|
2572 inference.
|
wolffd@0
|
2573 What we, following Pearl (2000), call IC* was called
|
wolffd@0
|
2574 IC in the original Pearl and Verma paper.)
|
wolffd@0
|
2575 For details, see
|
wolffd@0
|
2576 <ul>
|
wolffd@0
|
2577 <li>
|
wolffd@0
|
2578 <a href="http://hss.cmu.edu/html/departments/philosophy/TETRAD/tetrad.html">Causation,
|
wolffd@0
|
2579 Prediction, and Search</a>, Spirtes, Glymour and
|
wolffd@0
|
2580 Scheines (SGS), 2001 (2nd edition), MIT Press.
|
wolffd@0
|
2581 <li>
|
wolffd@0
|
2582 <a href="http://bayes.cs.ucla.edu/BOOK-2K/index.html">Causality: Models, Reasoning and Inference</a>, J. Pearl,
|
wolffd@0
|
2583 2000, Cambridge University Press.
|
wolffd@0
|
2584 </ul>
|
wolffd@0
|
2585
|
wolffd@0
|
2586 <p>
|
wolffd@0
|
2587
|
wolffd@0
|
2588 The PC algorithm takes as arguments a function f, the number of nodes N,
|
wolffd@0
|
2589 the maximum fan in K, and additional arguments A which are passed to f.
|
wolffd@0
|
2590 The function f(X,Y,S,A) returns 1 if X is conditionally independent of Y given S, and 0
|
wolffd@0
|
2591 otherwise.
|
wolffd@0
|
2592 For example, suppose we cheat by
|
wolffd@0
|
2593 passing in a CI "oracle" which has access to the true DAG; the oracle
|
wolffd@0
|
2594 tests for d-separation in this DAG, i.e.,
|
wolffd@0
|
2595 f(X,Y,S) calls dsep(X,Y,S,dag). We can to this as follows.
|
wolffd@0
|
2596 <pre>
|
wolffd@0
|
2597 pdag = learn_struct_pdag_pc('dsep', N, max_fan_in, dag);
|
wolffd@0
|
2598 </pre>
|
wolffd@0
|
2599 pdag(i,j) = -1 if there is definitely an i->j arc,
|
wolffd@0
|
2600 and pdag(i,j) = 1 if there is either an i->j or and i<-j arc.
|
wolffd@0
|
2601 <p>
|
wolffd@0
|
2602 Applied to the sprinkler network, this returns
|
wolffd@0
|
2603 <pre>
|
wolffd@0
|
2604 pdag =
|
wolffd@0
|
2605 0 1 1 0
|
wolffd@0
|
2606 1 0 0 -1
|
wolffd@0
|
2607 1 0 0 -1
|
wolffd@0
|
2608 0 0 0 0
|
wolffd@0
|
2609 </pre>
|
wolffd@0
|
2610 So as expected, we see that the V-structure at the W node is uniquely identified,
|
wolffd@0
|
2611 but the other arcs have ambiguous orientation.
|
wolffd@0
|
2612 <p>
|
wolffd@0
|
2613 We now give an example from p141 (1st edn) / p103 (2nd end) of the SGS
|
wolffd@0
|
2614 book.
|
wolffd@0
|
2615 This example concerns the female orgasm.
|
wolffd@0
|
2616 We are given a correlation matrix C between 7 measured factors (such
|
wolffd@0
|
2617 as subjective experiences of coital and masturbatory experiences),
|
wolffd@0
|
2618 derived from 281 samples, and want to learn a causal model of the
|
wolffd@0
|
2619 data. We will not discuss the merits of this type of work here, but
|
wolffd@0
|
2620 merely show how to reproduce the results in the SGS book.
|
wolffd@0
|
2621 Their program,
|
wolffd@0
|
2622 <a href="http://hss.cmu.edu/html/departments/philosophy/TETRAD/tetrad.html">Tetrad</a>,
|
wolffd@0
|
2623 makes use of the Fisher Z-test for conditional
|
wolffd@0
|
2624 independence, so we do the same:
|
wolffd@0
|
2625 <pre>
|
wolffd@0
|
2626 max_fan_in = 4;
|
wolffd@0
|
2627 nsamples = 281;
|
wolffd@0
|
2628 alpha = 0.05;
|
wolffd@0
|
2629 pdag = learn_struct_pdag_pc('cond_indep_fisher_z', n, max_fan_in, C, nsamples, alpha);
|
wolffd@0
|
2630 </pre>
|
wolffd@0
|
2631 In this case, the CI test is
|
wolffd@0
|
2632 <pre>
|
wolffd@0
|
2633 f(X,Y,S) = cond_indep_fisher_z(X,Y,S, C,nsamples,alpha)
|
wolffd@0
|
2634 </pre>
|
wolffd@0
|
2635 The results match those of Fig 12a of SGS apart from two edge
|
wolffd@0
|
2636 differences; presumably this is due to rounding error (although it
|
wolffd@0
|
2637 could be a bug, either in BNT or in Tetrad).
|
wolffd@0
|
2638 This example can be found in the file BNT/examples/static/pc2.m.
|
wolffd@0
|
2639
|
wolffd@0
|
2640 <p>
|
wolffd@0
|
2641
|
wolffd@0
|
2642 The IC* algorithm (Pearl and Verma, 1991),
|
wolffd@0
|
2643 and the faster FCI algorithm (Spirtes, Glymour, and Scheines 1993),
|
wolffd@0
|
2644 are like the IC/PC algorithm, except that they can detect the presence
|
wolffd@0
|
2645 of latent variables.
|
wolffd@0
|
2646 See the file <tt>learn_struct_pdag_ic_star</tt> written by Tamar
|
wolffd@0
|
2647 Kushnir. The output is a matrix P, defined as follows
|
wolffd@0
|
2648 (see Pearl (2000), p52 for details):
|
wolffd@0
|
2649 <pre>
|
wolffd@0
|
2650 % P(i,j) = -1 if there is either a latent variable L such that i <-L->j OR there is a directed edge from i->j.
|
wolffd@0
|
2651 % P(i,j) = -2 if there is a marked directed i-*>j edge.
|
wolffd@0
|
2652 % P(i,j) = P(j,i) = 1 if there is and undirected edge i--j
|
wolffd@0
|
2653 % P(i,j) = P(j,i) = 2 if there is a latent variable L such that i<-L->j.
|
wolffd@0
|
2654 </pre>
|
wolffd@0
|
2655
|
wolffd@0
|
2656
|
wolffd@0
|
2657 <h2><a name="phl">Philippe Leray's structure learning package</h2>
|
wolffd@0
|
2658
|
wolffd@0
|
2659 Philippe Leray has written a
|
wolffd@0
|
2660 <a href="http://bnt.insa-rouen.fr/ajouts.html">
|
wolffd@0
|
2661 structure learning package</a> that uses BNT.
|
wolffd@0
|
2662
|
wolffd@0
|
2663 It currently (Juen 2003) has the following features:
|
wolffd@0
|
2664 <ul>
|
wolffd@0
|
2665 <li>PC with Chi2 statistical test
|
wolffd@0
|
2666 <li> MWST : Maximum weighted Spanning Tree
|
wolffd@0
|
2667 <li> Hill Climbing
|
wolffd@0
|
2668 <li> Greedy Search
|
wolffd@0
|
2669 <li> Structural EM
|
wolffd@0
|
2670 <li> hist_ic : optimal Histogram based on IC information criterion
|
wolffd@0
|
2671 <li> cpdag_to_dag
|
wolffd@0
|
2672 <li> dag_to_cpdag
|
wolffd@0
|
2673 <li> ...
|
wolffd@0
|
2674 </ul>
|
wolffd@0
|
2675
|
wolffd@0
|
2676
|
wolffd@0
|
2677 </a>
|
wolffd@0
|
2678
|
wolffd@0
|
2679
|
wolffd@0
|
2680 <!--
|
wolffd@0
|
2681 <h2><a name="read_learning">Further reading on learning</h2>
|
wolffd@0
|
2682
|
wolffd@0
|
2683 I recommend the following tutorials for more details on learning.
|
wolffd@0
|
2684 <ul>
|
wolffd@0
|
2685 <li> <a
|
wolffd@0
|
2686 href="http://www.cs.berkeley.edu/~murphyk/Papers/intel.ps.gz">My short
|
wolffd@0
|
2687 tutorial</a> on graphical models, which contains an overview of learning.
|
wolffd@0
|
2688
|
wolffd@0
|
2689 <li>
|
wolffd@0
|
2690 <A HREF="ftp://ftp.research.microsoft.com/pub/tr/TR-95-06.PS">
|
wolffd@0
|
2691 A tutorial on learning with Bayesian networks</a>, D. Heckerman,
|
wolffd@0
|
2692 Microsoft Research Tech Report, 1995.
|
wolffd@0
|
2693
|
wolffd@0
|
2694 <li> <A HREF="http://www-cad.eecs.berkeley.edu/~wray/Mirror/lwgmja">
|
wolffd@0
|
2695 Operations for Learning with Graphical Models</a>,
|
wolffd@0
|
2696 W. L. Buntine, JAIR'94, 159--225.
|
wolffd@0
|
2697 </ul>
|
wolffd@0
|
2698 <p>
|
wolffd@0
|
2699 -->
|
wolffd@0
|
2700
|
wolffd@0
|
2701
|
wolffd@0
|
2702
|
wolffd@0
|
2703
|
wolffd@0
|
2704
|
wolffd@0
|
2705 <h1><a name="engines">Inference engines</h1>
|
wolffd@0
|
2706
|
wolffd@0
|
2707 Up until now, we have used the junction tree algorithm for inference.
|
wolffd@0
|
2708 However, sometimes this is too slow, or not even applicable.
|
wolffd@0
|
2709 In general, there are many inference algorithms each of which make
|
wolffd@0
|
2710 different tradeoffs between speed, accuracy, complexity and
|
wolffd@0
|
2711 generality. Furthermore, there might be many implementations of the
|
wolffd@0
|
2712 same algorithm; for instance, a general purpose, readable version,
|
wolffd@0
|
2713 and a highly-optimized, specialized one.
|
wolffd@0
|
2714 To cope with this variety, we treat each inference algorithm as an
|
wolffd@0
|
2715 object, which we call an inference engine.
|
wolffd@0
|
2716
|
wolffd@0
|
2717 <p>
|
wolffd@0
|
2718 An inference engine is an object that contains a bnet and supports the
|
wolffd@0
|
2719 'enter_evidence' and 'marginal_nodes' methods. The engine constructor
|
wolffd@0
|
2720 takes the bnet as argument and may do some model-specific processing.
|
wolffd@0
|
2721 When 'enter_evidence' is called, the engine may do some
|
wolffd@0
|
2722 evidence-specific processing. Finally, when 'marginal_nodes' is
|
wolffd@0
|
2723 called, the engine may do some query-specific processing.
|
wolffd@0
|
2724
|
wolffd@0
|
2725 <p>
|
wolffd@0
|
2726 The amount of work done when each stage is specified -- structure,
|
wolffd@0
|
2727 parameters, evidence, and query -- depends on the engine. The cost of
|
wolffd@0
|
2728 work done early in this sequence can be amortized. On the other hand,
|
wolffd@0
|
2729 one can make better optimizations if one waits until later in the
|
wolffd@0
|
2730 sequence.
|
wolffd@0
|
2731 For example, the parameters might imply
|
wolffd@0
|
2732 conditional indpendencies that are not evident in the graph structure,
|
wolffd@0
|
2733 but can nevertheless be exploited; the evidence indicates which nodes
|
wolffd@0
|
2734 are observed and hence can effectively be disconnected from the
|
wolffd@0
|
2735 graph; and the query might indicate that large parts of the network
|
wolffd@0
|
2736 are d-separated from the query nodes. (Since it is not the actual
|
wolffd@0
|
2737 <em>values</em> of the evidence that matters, just which nodes are observed,
|
wolffd@0
|
2738 many engines allow you to specify which nodes will be observed when they are constructed,
|
wolffd@0
|
2739 i.e., before calling 'enter_evidence'. Some engines can still cope if
|
wolffd@0
|
2740 the actual pattern of evidence is different, e.g., if there is missing
|
wolffd@0
|
2741 data.)
|
wolffd@0
|
2742 <p>
|
wolffd@0
|
2743
|
wolffd@0
|
2744 Although being maximally lazy (i.e., only doing work when a query is
|
wolffd@0
|
2745 issued) may seem desirable,
|
wolffd@0
|
2746 this is not always the most efficient.
|
wolffd@0
|
2747 For example,
|
wolffd@0
|
2748 when learning using EM, we need to call marginal_nodes N times, where N is the
|
wolffd@0
|
2749 number of nodes. <a href="varelim">Variable elimination</a> would end
|
wolffd@0
|
2750 up repeating a lot of work
|
wolffd@0
|
2751 each time marginal_nodes is called, making it inefficient for
|
wolffd@0
|
2752 learning. The junction tree algorithm, by contrast, uses dynamic
|
wolffd@0
|
2753 programming to avoid this redundant computation --- it calculates all
|
wolffd@0
|
2754 marginals in two passes during 'enter_evidence', so calling
|
wolffd@0
|
2755 'marginal_nodes' takes constant time.
|
wolffd@0
|
2756 <p>
|
wolffd@0
|
2757 We will discuss some of the inference algorithms implemented in BNT
|
wolffd@0
|
2758 below, and finish with a <a href="#engine_summary">summary</a> of all
|
wolffd@0
|
2759 of them.
|
wolffd@0
|
2760
|
wolffd@0
|
2761
|
wolffd@0
|
2762
|
wolffd@0
|
2763
|
wolffd@0
|
2764
|
wolffd@0
|
2765
|
wolffd@0
|
2766
|
wolffd@0
|
2767 <h2><a name="varelim">Variable elimination</h2>
|
wolffd@0
|
2768
|
wolffd@0
|
2769 The variable elimination algorithm, also known as bucket elimination
|
wolffd@0
|
2770 or peeling, is one of the simplest inference algorithms.
|
wolffd@0
|
2771 The basic idea is to "push sums inside of products"; this is explained
|
wolffd@0
|
2772 in more detail
|
wolffd@0
|
2773 <a
|
wolffd@0
|
2774 href="http://HTTP.CS.Berkeley.EDU/~murphyk/Bayes/bayes.html#infer">here</a>.
|
wolffd@0
|
2775 <p>
|
wolffd@0
|
2776 The principle of distributing sums over products can be generalized
|
wolffd@0
|
2777 greatly to apply to any commutative semiring.
|
wolffd@0
|
2778 This forms the basis of many common algorithms, such as Viterbi
|
wolffd@0
|
2779 decoding and the Fast Fourier Transform. For details, see
|
wolffd@0
|
2780
|
wolffd@0
|
2781 <ul>
|
wolffd@0
|
2782 <li> R. McEliece and S. M. Aji, 2000.
|
wolffd@0
|
2783 <!--<a href="http://www.systems.caltech.edu/EE/Faculty/rjm/papers/GDL.ps">-->
|
wolffd@0
|
2784 <a href="GDL.pdf">
|
wolffd@0
|
2785 The Generalized Distributive Law</a>,
|
wolffd@0
|
2786 IEEE Trans. Inform. Theory, vol. 46, no. 2 (March 2000),
|
wolffd@0
|
2787 pp. 325--343.
|
wolffd@0
|
2788
|
wolffd@0
|
2789
|
wolffd@0
|
2790 <li>
|
wolffd@0
|
2791 F. R. Kschischang, B. J. Frey and H.-A. Loeliger, 2001.
|
wolffd@0
|
2792 <a href="http://www.cs.toronto.edu/~frey/papers/fgspa.abs.html">
|
wolffd@0
|
2793 Factor graphs and the sum-product algorithm</a>
|
wolffd@0
|
2794 IEEE Transactions on Information Theory, February, 2001.
|
wolffd@0
|
2795
|
wolffd@0
|
2796 </ul>
|
wolffd@0
|
2797
|
wolffd@0
|
2798 <p>
|
wolffd@0
|
2799 Choosing an order in which to sum out the variables so as to minimize
|
wolffd@0
|
2800 computational cost is known to be NP-hard.
|
wolffd@0
|
2801 The implementation of this algorithm in
|
wolffd@0
|
2802 <tt>var_elim_inf_engine</tt> makes no attempt to optimize this
|
wolffd@0
|
2803 ordering (in contrast, say, to <tt>jtree_inf_engine</tt>, which uses a
|
wolffd@0
|
2804 greedy search procedure to find a good ordering).
|
wolffd@0
|
2805 <p>
|
wolffd@0
|
2806 Note: unlike most algorithms, var_elim does all its computational work
|
wolffd@0
|
2807 inside of <tt>marginal_nodes</tt>, not inside of
|
wolffd@0
|
2808 <tt>enter_evidence</tt>.
|
wolffd@0
|
2809
|
wolffd@0
|
2810
|
wolffd@0
|
2811
|
wolffd@0
|
2812
|
wolffd@0
|
2813 <h2><a name="global">Global inference methods</h2>
|
wolffd@0
|
2814
|
wolffd@0
|
2815 The simplest inference algorithm of all is to explicitely construct
|
wolffd@0
|
2816 the joint distribution over all the nodes, and then to marginalize it.
|
wolffd@0
|
2817 This is implemented in <tt>global_joint_inf_engine</tt>.
|
wolffd@0
|
2818 Since the size of the joint is exponential in the
|
wolffd@0
|
2819 number of discrete (hidden) nodes, this is not a very practical algorithm.
|
wolffd@0
|
2820 It is included merely for pedagogical and debugging purposes.
|
wolffd@0
|
2821 <p>
|
wolffd@0
|
2822 Three specialized versions of this algorithm have also been implemented,
|
wolffd@0
|
2823 corresponding to the cases where all the nodes are discrete (D), all
|
wolffd@0
|
2824 are Gaussian (G), and some are discrete and some Gaussian (CG).
|
wolffd@0
|
2825 They are called <tt>enumerative_inf_engine</tt>,
|
wolffd@0
|
2826 <tt>gaussian_inf_engine</tt>,
|
wolffd@0
|
2827 and <tt>cond_gauss_inf_engine</tt> respectively.
|
wolffd@0
|
2828 <p>
|
wolffd@0
|
2829 Note: unlike most algorithms, these global inference algorithms do all their computational work
|
wolffd@0
|
2830 inside of <tt>marginal_nodes</tt>, not inside of
|
wolffd@0
|
2831 <tt>enter_evidence</tt>.
|
wolffd@0
|
2832
|
wolffd@0
|
2833
|
wolffd@0
|
2834 <h2><a name="quickscore">Quickscore</h2>
|
wolffd@0
|
2835
|
wolffd@0
|
2836 The junction tree algorithm is quite slow on the <a href="#qmr">QMR</a> network,
|
wolffd@0
|
2837 since the cliques are so big.
|
wolffd@0
|
2838 One simple trick we can use is to notice that hidden leaves do not
|
wolffd@0
|
2839 affect the posteriors on the roots, and hence do not need to be
|
wolffd@0
|
2840 included in the network.
|
wolffd@0
|
2841 A second trick is to notice that the negative findings can be
|
wolffd@0
|
2842 "absorbed" into the prior:
|
wolffd@0
|
2843 see the file
|
wolffd@0
|
2844 BNT/examples/static/mk_minimal_qmr_bnet for details.
|
wolffd@0
|
2845 <p>
|
wolffd@0
|
2846
|
wolffd@0
|
2847 A much more significant speedup is obtained by exploiting special
|
wolffd@0
|
2848 properties of the noisy-or node, as done by the quickscore
|
wolffd@0
|
2849 algorithm. For details, see
|
wolffd@0
|
2850 <ul>
|
wolffd@0
|
2851 <li> Heckerman, "A tractable inference algorithm for diagnosing multiple diseases", UAI 89.
|
wolffd@0
|
2852 <li> Rish and Dechter, "On the impact of causal independence", UCI
|
wolffd@0
|
2853 tech report, 1998.
|
wolffd@0
|
2854 </ul>
|
wolffd@0
|
2855
|
wolffd@0
|
2856 This has been implemented in BNT as a special-purpose inference
|
wolffd@0
|
2857 engine, which can be created and used as follows:
|
wolffd@0
|
2858 <pre>
|
wolffd@0
|
2859 engine = quickscore_inf_engine(inhibit, leak, prior);
|
wolffd@0
|
2860 engine = enter_evidence(engine, pos, neg);
|
wolffd@0
|
2861 m = marginal_nodes(engine, i);
|
wolffd@0
|
2862 </pre>
|
wolffd@0
|
2863
|
wolffd@0
|
2864
|
wolffd@0
|
2865 <h2><a name="belprop">Belief propagation</h2>
|
wolffd@0
|
2866
|
wolffd@0
|
2867 Even using quickscore, exact inference takes time that is exponential
|
wolffd@0
|
2868 in the number of positive findings.
|
wolffd@0
|
2869 Hence for large networks we need to resort to approximate inference techniques.
|
wolffd@0
|
2870 See for example
|
wolffd@0
|
2871 <ul>
|
wolffd@0
|
2872 <li> T. Jaakkola and M. Jordan, "Variational probabilistic inference and the
|
wolffd@0
|
2873 QMR-DT network", JAIR 10, 1999.
|
wolffd@0
|
2874
|
wolffd@0
|
2875 <li> K. Murphy, Y. Weiss and M. Jordan, "Loopy belief propagation for approximate inference: an empirical study",
|
wolffd@0
|
2876 UAI 99.
|
wolffd@0
|
2877 </ul>
|
wolffd@0
|
2878 The latter approximation
|
wolffd@0
|
2879 entails applying Pearl's belief propagation algorithm to a model even
|
wolffd@0
|
2880 if it has loops (hence the name loopy belief propagation).
|
wolffd@0
|
2881 Pearl's algorithm, implemented as <tt>pearl_inf_engine</tt>, gives
|
wolffd@0
|
2882 exact results when applied to singly-connected graphs
|
wolffd@0
|
2883 (a.k.a. polytrees, since
|
wolffd@0
|
2884 the underlying undirected topology is a tree, but a node may have
|
wolffd@0
|
2885 multiple parents).
|
wolffd@0
|
2886 To apply this algorithm to a graph with loops,
|
wolffd@0
|
2887 use <tt>pearl_inf_engine</tt>.
|
wolffd@0
|
2888 This can use a centralized or distributed message passing protocol.
|
wolffd@0
|
2889 You can use it as in the following example.
|
wolffd@0
|
2890 <pre>
|
wolffd@0
|
2891 engine = pearl_inf_engine(bnet, 'max_iter', 30);
|
wolffd@0
|
2892 engine = enter_evidence(engine, evidence);
|
wolffd@0
|
2893 m = marginal_nodes(engine, i);
|
wolffd@0
|
2894 </pre>
|
wolffd@0
|
2895 We found that this algorithm often converges, and when it does, often
|
wolffd@0
|
2896 is very accurate, but it depends on the precise setting of the
|
wolffd@0
|
2897 parameter values of the network.
|
wolffd@0
|
2898 (See the file BNT/examples/static/qmr1 to repeat the experiment for yourself.)
|
wolffd@0
|
2899 Understanding when and why belief propagation converges/ works
|
wolffd@0
|
2900 is a topic of ongoing research.
|
wolffd@0
|
2901 <p>
|
wolffd@0
|
2902 <tt>pearl_inf_engine</tt> can exploit special structure in noisy-or
|
wolffd@0
|
2903 and gmux nodes to compute messages efficiently.
|
wolffd@0
|
2904 <p>
|
wolffd@0
|
2905 <tt>belprop_inf_engine</tt> is like pearl, but uses potentials to
|
wolffd@0
|
2906 represent messages. Hence this is slower.
|
wolffd@0
|
2907 <p>
|
wolffd@0
|
2908 <tt>belprop_fg_inf_engine</tt> is like belprop,
|
wolffd@0
|
2909 but is designed for factor graphs.
|
wolffd@0
|
2910
|
wolffd@0
|
2911
|
wolffd@0
|
2912
|
wolffd@0
|
2913 <h2><a name="sampling">Sampling</h2>
|
wolffd@0
|
2914
|
wolffd@0
|
2915 BNT now (Mar '02) has two sampling (Monte Carlo) inference algorithms:
|
wolffd@0
|
2916 <ul>
|
wolffd@0
|
2917 <li> <tt>likelihood_weighting_inf_engine</tt> which does importance
|
wolffd@0
|
2918 sampling and can handle any node type.
|
wolffd@0
|
2919 <li> <tt>gibbs_sampling_inf_engine</tt>, written by Bhaskara Marthi.
|
wolffd@0
|
2920 Currently this can only handle tabular CPDs.
|
wolffd@0
|
2921 For a much faster and more powerful Gibbs sampling program, see
|
wolffd@0
|
2922 <a href="http://www.mrc-bsu.cam.ac.uk/bugs">BUGS</a>.
|
wolffd@0
|
2923 </ul>
|
wolffd@0
|
2924 Note: To generate samples from a network (which is not the same as inference!),
|
wolffd@0
|
2925 use <tt>sample_bnet</tt>.
|
wolffd@0
|
2926
|
wolffd@0
|
2927
|
wolffd@0
|
2928
|
wolffd@0
|
2929 <h2><a name="engine_summary">Summary of inference engines</h2>
|
wolffd@0
|
2930
|
wolffd@0
|
2931
|
wolffd@0
|
2932 The inference engines differ in many ways. Here are
|
wolffd@0
|
2933 some of the major "axes":
|
wolffd@0
|
2934 <ul>
|
wolffd@0
|
2935 <li> Works for all topologies or makes restrictions?
|
wolffd@0
|
2936 <li> Works for all node types or makes restrictions?
|
wolffd@0
|
2937 <li> Exact or approximate inference?
|
wolffd@0
|
2938 </ul>
|
wolffd@0
|
2939
|
wolffd@0
|
2940 <p>
|
wolffd@0
|
2941 In terms of topology, most engines handle any kind of DAG.
|
wolffd@0
|
2942 <tt>belprop_fg</tt> does approximate inference on factor graphs (FG), which
|
wolffd@0
|
2943 can be used to represent directed, undirected, and mixed (chain)
|
wolffd@0
|
2944 graphs.
|
wolffd@0
|
2945 (In the future, we plan to support exact inference on chain graphs.)
|
wolffd@0
|
2946 <tt>quickscore</tt> only works on QMR-like models.
|
wolffd@0
|
2947 <p>
|
wolffd@0
|
2948 In terms of node types: algorithms that use potentials can handle
|
wolffd@0
|
2949 discrete (D), Gaussian (G) or conditional Gaussian (CG) models.
|
wolffd@0
|
2950 Sampling algorithms can essentially handle any kind of node (distribution).
|
wolffd@0
|
2951 Other algorithms make more restrictive assumptions in exchange for
|
wolffd@0
|
2952 speed.
|
wolffd@0
|
2953 <p>
|
wolffd@0
|
2954 Finally, most algorithms are designed to give the exact answer.
|
wolffd@0
|
2955 The belief propagation algorithms are exact if applied to trees, and
|
wolffd@0
|
2956 in some other cases.
|
wolffd@0
|
2957 Sampling is considered approximate, even though, in the limit of an
|
wolffd@0
|
2958 infinite number of samples, it gives the exact answer.
|
wolffd@0
|
2959
|
wolffd@0
|
2960 <p>
|
wolffd@0
|
2961
|
wolffd@0
|
2962 Here is a summary of the properties
|
wolffd@0
|
2963 of all the engines in BNT which work on static networks.
|
wolffd@0
|
2964 <p>
|
wolffd@0
|
2965 <table>
|
wolffd@0
|
2966 <table border units = pixels><tr>
|
wolffd@0
|
2967 <td align=left width=0>Name
|
wolffd@0
|
2968 <td align=left width=0>Exact?
|
wolffd@0
|
2969 <td align=left width=0>Node type?
|
wolffd@0
|
2970 <td align=left width=0>topology
|
wolffd@0
|
2971 <tr>
|
wolffd@0
|
2972 <tr>
|
wolffd@0
|
2973 <td align=left> belprop
|
wolffd@0
|
2974 <td align=left> approx
|
wolffd@0
|
2975 <td align=left> D
|
wolffd@0
|
2976 <td align=left> DAG
|
wolffd@0
|
2977 <tr>
|
wolffd@0
|
2978 <td align=left> belprop_fg
|
wolffd@0
|
2979 <td align=left> approx
|
wolffd@0
|
2980 <td align=left> D
|
wolffd@0
|
2981 <td align=left> factor graph
|
wolffd@0
|
2982 <tr>
|
wolffd@0
|
2983 <td align=left> cond_gauss
|
wolffd@0
|
2984 <td align=left> exact
|
wolffd@0
|
2985 <td align=left> CG
|
wolffd@0
|
2986 <td align=left> DAG
|
wolffd@0
|
2987 <tr>
|
wolffd@0
|
2988 <td align=left> enumerative
|
wolffd@0
|
2989 <td align=left> exact
|
wolffd@0
|
2990 <td align=left> D
|
wolffd@0
|
2991 <td align=left> DAG
|
wolffd@0
|
2992 <tr>
|
wolffd@0
|
2993 <td align=left> gaussian
|
wolffd@0
|
2994 <td align=left> exact
|
wolffd@0
|
2995 <td align=left> G
|
wolffd@0
|
2996 <td align=left> DAG
|
wolffd@0
|
2997 <tr>
|
wolffd@0
|
2998 <td align=left> gibbs
|
wolffd@0
|
2999 <td align=left> approx
|
wolffd@0
|
3000 <td align=left> D
|
wolffd@0
|
3001 <td align=left> DAG
|
wolffd@0
|
3002 <tr>
|
wolffd@0
|
3003 <td align=left> global_joint
|
wolffd@0
|
3004 <td align=left> exact
|
wolffd@0
|
3005 <td align=left> D,G,CG
|
wolffd@0
|
3006 <td align=left> DAG
|
wolffd@0
|
3007 <tr>
|
wolffd@0
|
3008 <td align=left> jtree
|
wolffd@0
|
3009 <td align=left> exact
|
wolffd@0
|
3010 <td align=left> D,G,CG
|
wolffd@0
|
3011 <td align=left> DAG
|
wolffd@0
|
3012 b<tr>
|
wolffd@0
|
3013 <td align=left> likelihood_weighting
|
wolffd@0
|
3014 <td align=left> approx
|
wolffd@0
|
3015 <td align=left> any
|
wolffd@0
|
3016 <td align=left> DAG
|
wolffd@0
|
3017 <tr>
|
wolffd@0
|
3018 <td align=left> pearl
|
wolffd@0
|
3019 <td align=left> approx
|
wolffd@0
|
3020 <td align=left> D,G
|
wolffd@0
|
3021 <td align=left> DAG
|
wolffd@0
|
3022 <tr>
|
wolffd@0
|
3023 <td align=left> pearl
|
wolffd@0
|
3024 <td align=left> exact
|
wolffd@0
|
3025 <td align=left> D,G
|
wolffd@0
|
3026 <td align=left> polytree
|
wolffd@0
|
3027 <tr>
|
wolffd@0
|
3028 <td align=left> quickscore
|
wolffd@0
|
3029 <td align=left> exact
|
wolffd@0
|
3030 <td align=left> noisy-or
|
wolffd@0
|
3031 <td align=left> QMR
|
wolffd@0
|
3032 <tr>
|
wolffd@0
|
3033 <td align=left> stab_cond_gauss
|
wolffd@0
|
3034 <td align=left> exact
|
wolffd@0
|
3035 <td align=left> CG
|
wolffd@0
|
3036 <td align=left> DAG
|
wolffd@0
|
3037 <tr>
|
wolffd@0
|
3038 <td align=left> var_elim
|
wolffd@0
|
3039 <td align=left> exact
|
wolffd@0
|
3040 <td align=left> D,G,CG
|
wolffd@0
|
3041 <td align=left> DAG
|
wolffd@0
|
3042 </table>
|
wolffd@0
|
3043
|
wolffd@0
|
3044
|
wolffd@0
|
3045
|
wolffd@0
|
3046 <h1><a name="influence">Influence diagrams/ decision making</h1>
|
wolffd@0
|
3047
|
wolffd@0
|
3048 BNT implements an exact algorithm for solving LIMIDs (limited memory
|
wolffd@0
|
3049 influence diagrams), described in
|
wolffd@0
|
3050 <ul>
|
wolffd@0
|
3051 <li> S. L. Lauritzen and D. Nilsson.
|
wolffd@0
|
3052 <a href="http://www.math.auc.dk/~steffen/papers/limids.pdf">
|
wolffd@0
|
3053 Representing and solving decision problems with limited
|
wolffd@0
|
3054 information</a>
|
wolffd@0
|
3055 Management Science, 47, 1238 - 1251. September 2001.
|
wolffd@0
|
3056 </ul>
|
wolffd@0
|
3057 LIMIDs explicitely show all information arcs, rather than implicitely
|
wolffd@0
|
3058 assuming no forgetting. This allows them to model forgetful
|
wolffd@0
|
3059 controllers.
|
wolffd@0
|
3060 <p>
|
wolffd@0
|
3061 See the examples in <tt>BNT/examples/limids</tt> for details.
|
wolffd@0
|
3062
|
wolffd@0
|
3063
|
wolffd@0
|
3064
|
wolffd@0
|
3065
|
wolffd@0
|
3066 <h1>DBNs, HMMs, Kalman filters and all that</h1>
|
wolffd@0
|
3067
|
wolffd@0
|
3068 Click <a href="usage_dbn.html">here</a> for documentation about how to
|
wolffd@0
|
3069 use BNT for dynamical systems and sequence data.
|
wolffd@0
|
3070
|
wolffd@0
|
3071
|
wolffd@0
|
3072 </BODY>
|