wolffd@0
|
1 function smallpot = marginalize_pot(bigpot, keep, maximize, useC)
|
wolffd@0
|
2 % MARGINALIZE_POT Marginalize a mpot onto a smaller domain.
|
wolffd@0
|
3 % smallpot = marginalize_pot(bigpot, keep, maximize, useC)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % The maximize argument is ignored - maxing out a Gaussian is the same as summing it out,
|
wolffd@0
|
6 % since the mode and mean are equal.
|
wolffd@0
|
7 % The useC argument is ignored.
|
wolffd@0
|
8
|
wolffd@0
|
9
|
wolffd@0
|
10 node_sizes = sparse(1, max(bigpot.domain));
|
wolffd@0
|
11 node_sizes(bigpot.domain) = bigpot.sizes;
|
wolffd@0
|
12 sum_over = mysetdiff(bigpot.domain, keep);
|
wolffd@0
|
13
|
wolffd@0
|
14 [logp, mu, Sigma] = marginalize_gaussian(bigpot.logp, bigpot.mu, bigpot.Sigma, ...
|
wolffd@0
|
15 keep, sum_over, node_sizes);
|
wolffd@0
|
16 smallpot = mpot(keep, node_sizes(keep), logp, mu, Sigma);
|
wolffd@0
|
17
|
wolffd@0
|
18 %%%%%%
|
wolffd@0
|
19
|
wolffd@0
|
20 function [logpX, muX, SXX] = marginalize_gaussian(logp, mu, Sigma, X, Y, ns)
|
wolffd@0
|
21 % MARGINALIZE_GAUSSIAN Compute Pr(X) from Pr(X,Y) where X and Y are jointly Gaussian.
|
wolffd@0
|
22 % [logpX, muX, SXX] = marginalize_gaussian(logp, mu, Sigma, X, Y, ns)
|
wolffd@0
|
23 %
|
wolffd@0
|
24 % sizes(i) is the size of the i'th block in domain.
|
wolffd@0
|
25
|
wolffd@0
|
26 [muX, muY, SXX, SXY, SYX, SYY] = partition_matrix_vec(mu, Sigma, X, Y, ns);
|
wolffd@0
|
27 logpX = logp; % Lauritzen (1996) p161
|