wolffd@0
|
1 function [pdag, G] = learn_struct_pdag_pc(cond_indep, n, k, varargin)
|
wolffd@0
|
2 % LEARN_STRUCT_PDAG_PC Learn a partially oriented DAG (pattern) using the PC algorithm
|
wolffd@0
|
3 % P = learn_struct_pdag_pc(cond_indep, n, k, ...)
|
wolffd@0
|
4 %
|
wolffd@0
|
5 % n is the number of nodes.
|
wolffd@0
|
6 % k is an optional upper bound on the fan-in (default: n)
|
wolffd@0
|
7 % cond_indep is a boolean function that will be called as follows:
|
wolffd@0
|
8 % feval(cond_indep, x, y, S, ...)
|
wolffd@0
|
9 % where x and y are nodes, and S is a set of nodes (positive integers),
|
wolffd@0
|
10 % and ... are any optional parameters passed to this function.
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % The output P is an adjacency matrix, in which
|
wolffd@0
|
13 % P(i,j) = -1 if there is an i->j edge.
|
wolffd@0
|
14 % P(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j
|
wolffd@0
|
15 %
|
wolffd@0
|
16 % The PC algorithm does structure learning assuming all variables are observed.
|
wolffd@0
|
17 % See Spirtes, Glymour and Scheines, "Causation, Prediction and Search", 1993, p117.
|
wolffd@0
|
18 % This algorithm may take O(n^k) time if there are n variables and k is the max fan-in,
|
wolffd@0
|
19 % but this is quicker than the Verma-Pearl IC algorithm, which is always O(n^n).
|
wolffd@0
|
20
|
wolffd@0
|
21
|
wolffd@0
|
22 sep = cell(n,n);
|
wolffd@0
|
23 ord = 0;
|
wolffd@0
|
24 done = 0;
|
wolffd@0
|
25 G = ones(n,n);
|
wolffd@0
|
26 G=setdiag(G,0);
|
wolffd@0
|
27 while ~done
|
wolffd@0
|
28 done = 1;
|
wolffd@0
|
29 [X,Y] = find(G);
|
wolffd@0
|
30 for i=1:length(X)
|
wolffd@0
|
31 x = X(i); y = Y(i);
|
wolffd@0
|
32 %nbrs = mysetdiff(myunion(neighbors(G, x), neighbors(G,y)), [x y]);
|
wolffd@0
|
33 nbrs = mysetdiff(neighbors(G, y), x); % bug fix by Raanan Yehezkel <raanany@ee.bgu.ac.il> 6/27/04
|
wolffd@0
|
34 if length(nbrs) >= ord & G(x,y) ~= 0
|
wolffd@0
|
35 done = 0;
|
wolffd@0
|
36 %SS = subsets(nbrs, ord, ord); % all subsets of size ord
|
wolffd@0
|
37 SS = subsets1(nbrs, ord);
|
wolffd@0
|
38 for si=1:length(SS)
|
wolffd@0
|
39 S = SS{si};
|
wolffd@0
|
40 if feval(cond_indep, x, y, S, varargin{:})
|
wolffd@0
|
41 %if isempty(S)
|
wolffd@0
|
42 % fprintf('%d indep of %d ', x, y);
|
wolffd@0
|
43 %else
|
wolffd@0
|
44 % fprintf('%d indep of %d given ', x, y); fprintf('%d ', S);
|
wolffd@0
|
45 %end
|
wolffd@0
|
46 %fprintf('\n');
|
wolffd@0
|
47
|
wolffd@0
|
48 % diagnostic
|
wolffd@0
|
49 %[CI, r] = cond_indep_fisher_z(x, y, S, varargin{:});
|
wolffd@0
|
50 %fprintf(': r = %6.4f\n', r);
|
wolffd@0
|
51
|
wolffd@0
|
52 G(x,y) = 0;
|
wolffd@0
|
53 G(y,x) = 0;
|
wolffd@0
|
54 sep{x,y} = myunion(sep{x,y}, S);
|
wolffd@0
|
55 sep{y,x} = myunion(sep{y,x}, S);
|
wolffd@0
|
56 break; % no need to check any more subsets
|
wolffd@0
|
57 end
|
wolffd@0
|
58 end
|
wolffd@0
|
59 end
|
wolffd@0
|
60 end
|
wolffd@0
|
61 ord = ord + 1;
|
wolffd@0
|
62 end
|
wolffd@0
|
63
|
wolffd@0
|
64
|
wolffd@0
|
65 % Create the minimal pattern,
|
wolffd@0
|
66 % i.e., the only directed edges are V structures.
|
wolffd@0
|
67 pdag = G;
|
wolffd@0
|
68 [X, Y] = find(G);
|
wolffd@0
|
69 % We want to generate all unique triples x,y,z
|
wolffd@0
|
70 % This code generates x,y,z and z,y,x.
|
wolffd@0
|
71 for i=1:length(X)
|
wolffd@0
|
72 x = X(i);
|
wolffd@0
|
73 y = Y(i);
|
wolffd@0
|
74 Z = find(G(y,:));
|
wolffd@0
|
75 Z = mysetdiff(Z, x);
|
wolffd@0
|
76 for z=Z(:)'
|
wolffd@0
|
77 if G(x,z)==0 & ~ismember(y, sep{x,z}) & ~ismember(y, sep{z,x})
|
wolffd@0
|
78 %fprintf('%d -> %d <- %d\n', x, y, z);
|
wolffd@0
|
79 pdag(x,y) = -1; pdag(y,x) = 0;
|
wolffd@0
|
80 pdag(z,y) = -1; pdag(y,z) = 0;
|
wolffd@0
|
81 end
|
wolffd@0
|
82 end
|
wolffd@0
|
83 end
|
wolffd@0
|
84
|
wolffd@0
|
85 % Convert the minimal pattern to a complete one,
|
wolffd@0
|
86 % i.e., every directed edge in P is compelled
|
wolffd@0
|
87 % (must be directed in all Markov equivalent models),
|
wolffd@0
|
88 % and every undirected edge in P is reversible.
|
wolffd@0
|
89 % We use the rules of Pearl (2000) p51 (derived in Meek (1995))
|
wolffd@0
|
90
|
wolffd@0
|
91 old_pdag = zeros(n);
|
wolffd@0
|
92 iter = 0;
|
wolffd@0
|
93 while ~isequal(pdag, old_pdag)
|
wolffd@0
|
94 iter = iter + 1;
|
wolffd@0
|
95 old_pdag = pdag;
|
wolffd@0
|
96 % rule 1
|
wolffd@0
|
97 [A,B] = find(pdag==-1); % a -> b
|
wolffd@0
|
98 for i=1:length(A)
|
wolffd@0
|
99 a = A(i); b = B(i);
|
wolffd@0
|
100 C = find(pdag(b,:)==1 & G(a,:)==0); % all nodes adj to b but not a
|
wolffd@0
|
101 if ~isempty(C)
|
wolffd@0
|
102 pdag(b,C) = -1; pdag(C,b) = 0;
|
wolffd@0
|
103 %fprintf('rule 1: a=%d->b=%d and b=%d-c=%d implies %d->%d\n', a, b, b, C, b, C);
|
wolffd@0
|
104 end
|
wolffd@0
|
105 end
|
wolffd@0
|
106 % rule 2
|
wolffd@0
|
107 [A,B] = find(pdag==1); % unoriented a-b edge
|
wolffd@0
|
108 for i=1:length(A)
|
wolffd@0
|
109 a = A(i); b = B(i);
|
wolffd@0
|
110 if any( (pdag(a,:)==-1) & (pdag(:,b)==-1)' );
|
wolffd@0
|
111 pdag(a,b) = -1; pdag(b,a) = 0;
|
wolffd@0
|
112 %fprintf('rule 2: %d -> %d\n', a, b);
|
wolffd@0
|
113 end
|
wolffd@0
|
114 end
|
wolffd@0
|
115 % rule 3
|
wolffd@0
|
116 [A,B] = find(pdag==1); % a-b
|
wolffd@0
|
117 for i=1:length(A)
|
wolffd@0
|
118 a = A(i); b = B(i);
|
wolffd@0
|
119 C = find( (pdag(a,:)==1) & (pdag(:,b)==-1)' );
|
wolffd@0
|
120 % C contains nodes c s.t. a-c->ba
|
wolffd@0
|
121 G2 = setdiag(G(C, C), 1);
|
wolffd@0
|
122 if any(G2(:)==0) % there are 2 different non adjacent elements of C
|
wolffd@0
|
123 pdag(a,b) = -1; pdag(b,a) = 0;
|
wolffd@0
|
124 %fprintf('rule 3: %d -> %d\n', a, b);
|
wolffd@0
|
125 end
|
wolffd@0
|
126 end
|
wolffd@0
|
127 end
|
wolffd@0
|
128
|
wolffd@0
|
129
|