annotate toolboxes/FullBNT-1.0.7/bnt/learning/learn_struct_pdag_pc.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [pdag, G] = learn_struct_pdag_pc(cond_indep, n, k, varargin)
wolffd@0 2 % LEARN_STRUCT_PDAG_PC Learn a partially oriented DAG (pattern) using the PC algorithm
wolffd@0 3 % P = learn_struct_pdag_pc(cond_indep, n, k, ...)
wolffd@0 4 %
wolffd@0 5 % n is the number of nodes.
wolffd@0 6 % k is an optional upper bound on the fan-in (default: n)
wolffd@0 7 % cond_indep is a boolean function that will be called as follows:
wolffd@0 8 % feval(cond_indep, x, y, S, ...)
wolffd@0 9 % where x and y are nodes, and S is a set of nodes (positive integers),
wolffd@0 10 % and ... are any optional parameters passed to this function.
wolffd@0 11 %
wolffd@0 12 % The output P is an adjacency matrix, in which
wolffd@0 13 % P(i,j) = -1 if there is an i->j edge.
wolffd@0 14 % P(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j
wolffd@0 15 %
wolffd@0 16 % The PC algorithm does structure learning assuming all variables are observed.
wolffd@0 17 % See Spirtes, Glymour and Scheines, "Causation, Prediction and Search", 1993, p117.
wolffd@0 18 % This algorithm may take O(n^k) time if there are n variables and k is the max fan-in,
wolffd@0 19 % but this is quicker than the Verma-Pearl IC algorithm, which is always O(n^n).
wolffd@0 20
wolffd@0 21
wolffd@0 22 sep = cell(n,n);
wolffd@0 23 ord = 0;
wolffd@0 24 done = 0;
wolffd@0 25 G = ones(n,n);
wolffd@0 26 G=setdiag(G,0);
wolffd@0 27 while ~done
wolffd@0 28 done = 1;
wolffd@0 29 [X,Y] = find(G);
wolffd@0 30 for i=1:length(X)
wolffd@0 31 x = X(i); y = Y(i);
wolffd@0 32 %nbrs = mysetdiff(myunion(neighbors(G, x), neighbors(G,y)), [x y]);
wolffd@0 33 nbrs = mysetdiff(neighbors(G, y), x); % bug fix by Raanan Yehezkel <raanany@ee.bgu.ac.il> 6/27/04
wolffd@0 34 if length(nbrs) >= ord & G(x,y) ~= 0
wolffd@0 35 done = 0;
wolffd@0 36 %SS = subsets(nbrs, ord, ord); % all subsets of size ord
wolffd@0 37 SS = subsets1(nbrs, ord);
wolffd@0 38 for si=1:length(SS)
wolffd@0 39 S = SS{si};
wolffd@0 40 if feval(cond_indep, x, y, S, varargin{:})
wolffd@0 41 %if isempty(S)
wolffd@0 42 % fprintf('%d indep of %d ', x, y);
wolffd@0 43 %else
wolffd@0 44 % fprintf('%d indep of %d given ', x, y); fprintf('%d ', S);
wolffd@0 45 %end
wolffd@0 46 %fprintf('\n');
wolffd@0 47
wolffd@0 48 % diagnostic
wolffd@0 49 %[CI, r] = cond_indep_fisher_z(x, y, S, varargin{:});
wolffd@0 50 %fprintf(': r = %6.4f\n', r);
wolffd@0 51
wolffd@0 52 G(x,y) = 0;
wolffd@0 53 G(y,x) = 0;
wolffd@0 54 sep{x,y} = myunion(sep{x,y}, S);
wolffd@0 55 sep{y,x} = myunion(sep{y,x}, S);
wolffd@0 56 break; % no need to check any more subsets
wolffd@0 57 end
wolffd@0 58 end
wolffd@0 59 end
wolffd@0 60 end
wolffd@0 61 ord = ord + 1;
wolffd@0 62 end
wolffd@0 63
wolffd@0 64
wolffd@0 65 % Create the minimal pattern,
wolffd@0 66 % i.e., the only directed edges are V structures.
wolffd@0 67 pdag = G;
wolffd@0 68 [X, Y] = find(G);
wolffd@0 69 % We want to generate all unique triples x,y,z
wolffd@0 70 % This code generates x,y,z and z,y,x.
wolffd@0 71 for i=1:length(X)
wolffd@0 72 x = X(i);
wolffd@0 73 y = Y(i);
wolffd@0 74 Z = find(G(y,:));
wolffd@0 75 Z = mysetdiff(Z, x);
wolffd@0 76 for z=Z(:)'
wolffd@0 77 if G(x,z)==0 & ~ismember(y, sep{x,z}) & ~ismember(y, sep{z,x})
wolffd@0 78 %fprintf('%d -> %d <- %d\n', x, y, z);
wolffd@0 79 pdag(x,y) = -1; pdag(y,x) = 0;
wolffd@0 80 pdag(z,y) = -1; pdag(y,z) = 0;
wolffd@0 81 end
wolffd@0 82 end
wolffd@0 83 end
wolffd@0 84
wolffd@0 85 % Convert the minimal pattern to a complete one,
wolffd@0 86 % i.e., every directed edge in P is compelled
wolffd@0 87 % (must be directed in all Markov equivalent models),
wolffd@0 88 % and every undirected edge in P is reversible.
wolffd@0 89 % We use the rules of Pearl (2000) p51 (derived in Meek (1995))
wolffd@0 90
wolffd@0 91 old_pdag = zeros(n);
wolffd@0 92 iter = 0;
wolffd@0 93 while ~isequal(pdag, old_pdag)
wolffd@0 94 iter = iter + 1;
wolffd@0 95 old_pdag = pdag;
wolffd@0 96 % rule 1
wolffd@0 97 [A,B] = find(pdag==-1); % a -> b
wolffd@0 98 for i=1:length(A)
wolffd@0 99 a = A(i); b = B(i);
wolffd@0 100 C = find(pdag(b,:)==1 & G(a,:)==0); % all nodes adj to b but not a
wolffd@0 101 if ~isempty(C)
wolffd@0 102 pdag(b,C) = -1; pdag(C,b) = 0;
wolffd@0 103 %fprintf('rule 1: a=%d->b=%d and b=%d-c=%d implies %d->%d\n', a, b, b, C, b, C);
wolffd@0 104 end
wolffd@0 105 end
wolffd@0 106 % rule 2
wolffd@0 107 [A,B] = find(pdag==1); % unoriented a-b edge
wolffd@0 108 for i=1:length(A)
wolffd@0 109 a = A(i); b = B(i);
wolffd@0 110 if any( (pdag(a,:)==-1) & (pdag(:,b)==-1)' );
wolffd@0 111 pdag(a,b) = -1; pdag(b,a) = 0;
wolffd@0 112 %fprintf('rule 2: %d -> %d\n', a, b);
wolffd@0 113 end
wolffd@0 114 end
wolffd@0 115 % rule 3
wolffd@0 116 [A,B] = find(pdag==1); % a-b
wolffd@0 117 for i=1:length(A)
wolffd@0 118 a = A(i); b = B(i);
wolffd@0 119 C = find( (pdag(a,:)==1) & (pdag(:,b)==-1)' );
wolffd@0 120 % C contains nodes c s.t. a-c->ba
wolffd@0 121 G2 = setdiag(G(C, C), 1);
wolffd@0 122 if any(G2(:)==0) % there are 2 different non adjacent elements of C
wolffd@0 123 pdag(a,b) = -1; pdag(b,a) = 0;
wolffd@0 124 %fprintf('rule 3: %d -> %d\n', a, b);
wolffd@0 125 end
wolffd@0 126 end
wolffd@0 127 end
wolffd@0 128
wolffd@0 129