wolffd@0
|
1 function bnet = mk_dbn(intra, inter, node_sizes, varargin)
|
wolffd@0
|
2 % MK_DBN Make a Dynamic Bayesian Network.
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % BNET = MK_DBN(INTRA, INTER, NODE_SIZES, ...) makes a DBN with arcs
|
wolffd@0
|
5 % from i in slice t to j in slice t iff intra(i,j) = 1, and
|
wolffd@0
|
6 % from i in slice t to j in slice t+1 iff inter(i,j) = 1,
|
wolffd@0
|
7 % for i,j in {1, 2, ..., n}, where n = num. nodes per slice, and t >= 1.
|
wolffd@0
|
8 % node_sizes(i) is the number of values node i can take on.
|
wolffd@0
|
9 % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.
|
wolffd@0
|
10 % See also mk_bnet.
|
wolffd@0
|
11 %
|
wolffd@0
|
12 % Optional arguments [default in brackets]
|
wolffd@0
|
13 % 'discrete' - list of discrete nodes [1:n]
|
wolffd@0
|
14 % 'observed' - the list of nodes which will definitely be observed in every slice of every case [ [] ]
|
wolffd@0
|
15 % 'eclass1' - equiv class for slice 1 [1:n]
|
wolffd@0
|
16 % 'eclass2' - equiv class for slice 2 [tie nodes with equivalent parents to slice 1]
|
wolffd@0
|
17 % equiv_class1(i) = j means node i in slice 1 gets its parameters from bnet.CPD{j},
|
wolffd@0
|
18 % i.e., nodes i and j have tied parameters.
|
wolffd@0
|
19 % 'intra1' - topology of first slice, if different from others
|
wolffd@0
|
20 % 'names' - a cell array of strings to be associated with nodes 1:n [{}]
|
wolffd@0
|
21 % This creates an associative array, so you write e.g.
|
wolffd@0
|
22 % 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42'
|
wolffd@0
|
23 % assuming names = { 'foo', 'bar', ...}.
|
wolffd@0
|
24 %
|
wolffd@0
|
25 % For backwards compatibility with BNT2, arguments can also be specified as follows
|
wolffd@0
|
26 % bnet = mk_dbn(intra, inter, node_sizes, dnodes, eclass1, eclass2, intra1)
|
wolffd@0
|
27 %
|
wolffd@0
|
28 % After calling this function, you must specify the parameters (conditional probability
|
wolffd@0
|
29 % distributions) using bnet.CPD{i} = gaussian_CPD(...) or tabular_CPD(...) etc.
|
wolffd@0
|
30
|
wolffd@0
|
31
|
wolffd@0
|
32 n = length(intra);
|
wolffd@0
|
33 ss = n;
|
wolffd@0
|
34 bnet.nnodes_per_slice = ss;
|
wolffd@0
|
35 bnet.intra = intra;
|
wolffd@0
|
36 bnet.inter = inter;
|
wolffd@0
|
37 bnet.intra1 = intra;
|
wolffd@0
|
38 dag = zeros(2*n);
|
wolffd@0
|
39 dag(1:n,1:n) = bnet.intra1;
|
wolffd@0
|
40 dag(1:n,(1:n)+n) = bnet.inter;
|
wolffd@0
|
41 dag((1:n)+n,(1:n)+n) = bnet.intra;
|
wolffd@0
|
42 bnet.dag = dag;
|
wolffd@0
|
43 bnet.names = {};
|
wolffd@0
|
44
|
wolffd@0
|
45 directed = 1;
|
wolffd@0
|
46 if ~acyclic(dag,directed)
|
wolffd@0
|
47 error('graph must be acyclic')
|
wolffd@0
|
48 end
|
wolffd@0
|
49
|
wolffd@0
|
50
|
wolffd@0
|
51 bnet.eclass1 = 1:n;
|
wolffd@0
|
52 %bnet.eclass2 = (1:n)+n;
|
wolffd@0
|
53 bnet.eclass2 = bnet.eclass1;
|
wolffd@0
|
54 for i=1:ss
|
wolffd@0
|
55 if isequal(parents(dag, i+ss), parents(dag, i)+ss)
|
wolffd@0
|
56 %fprintf('%d has isomorphic parents, eclass %d\n', i, bnet.eclass2(i))
|
wolffd@0
|
57 else
|
wolffd@0
|
58 bnet.eclass2(i) = max(bnet.eclass2) + 1;
|
wolffd@0
|
59 %fprintf('%d has non isomorphic parents, eclass %d\n', i, bnet.eclass2(i))
|
wolffd@0
|
60 end
|
wolffd@0
|
61 end
|
wolffd@0
|
62
|
wolffd@0
|
63 dnodes = 1:n;
|
wolffd@0
|
64 bnet.observed = [];
|
wolffd@0
|
65
|
wolffd@0
|
66 if nargin >= 4
|
wolffd@0
|
67 args = varargin;
|
wolffd@0
|
68 nargs = length(args);
|
wolffd@0
|
69 if ~isstr(args{1})
|
wolffd@0
|
70 if nargs >= 1, dnodes = args{1}; end
|
wolffd@0
|
71 if nargs >= 2, bnet.eclass1 = args{2}; end
|
wolffd@0
|
72 if nargs >= 3, bnet.eclass2 = args{3}; end
|
wolffd@0
|
73 if nargs >= 4, bnet.intra1 = args{4}; end
|
wolffd@0
|
74 else
|
wolffd@0
|
75 for i=1:2:nargs
|
wolffd@0
|
76 switch args{i},
|
wolffd@0
|
77 case 'discrete', dnodes = args{i+1};
|
wolffd@0
|
78 case 'observed', bnet.observed = args{i+1};
|
wolffd@0
|
79 case 'eclass1', bnet.eclass1 = args{i+1};
|
wolffd@0
|
80 case 'eclass2', bnet.eclass2 = args{i+1};
|
wolffd@0
|
81 case 'intra1', bnet.intra1 = args{i+1};
|
wolffd@0
|
82 %case 'ar_hmm', bnet.ar_hmm = args{i+1}; % should check topology
|
wolffd@0
|
83 case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n));
|
wolffd@0
|
84 otherwise,
|
wolffd@0
|
85 error(['invalid argument name ' args{i}]);
|
wolffd@0
|
86 end
|
wolffd@0
|
87 end
|
wolffd@0
|
88 end
|
wolffd@0
|
89 end
|
wolffd@0
|
90
|
wolffd@0
|
91
|
wolffd@0
|
92 bnet.observed = sort(bnet.observed); % for comparing sets
|
wolffd@0
|
93 ns = node_sizes;
|
wolffd@0
|
94 bnet.node_sizes_slice = ns(:)';
|
wolffd@0
|
95 bnet.node_sizes = [ns(:) ns(:)];
|
wolffd@0
|
96
|
wolffd@0
|
97 cnodes = mysetdiff(1:n, dnodes);
|
wolffd@0
|
98 bnet.dnodes_slice = dnodes;
|
wolffd@0
|
99 bnet.cnodes_slice = cnodes;
|
wolffd@0
|
100 bnet.dnodes = [dnodes dnodes+n];
|
wolffd@0
|
101 bnet.cnodes = [cnodes cnodes+n];
|
wolffd@0
|
102
|
wolffd@0
|
103 bnet.equiv_class = [bnet.eclass1(:) bnet.eclass2(:)];
|
wolffd@0
|
104 bnet.CPD = cell(1,max(bnet.equiv_class(:)));
|
wolffd@0
|
105 eclass = bnet.equiv_class(:);
|
wolffd@0
|
106 E = max(eclass);
|
wolffd@0
|
107 bnet.rep_of_eclass = zeros(1,E);
|
wolffd@0
|
108 for e=1:E
|
wolffd@0
|
109 mems = find(eclass==e);
|
wolffd@0
|
110 bnet.rep_of_eclass(e) = mems(1);
|
wolffd@0
|
111 end
|
wolffd@0
|
112
|
wolffd@0
|
113 ss = n;
|
wolffd@0
|
114 onodes = bnet.observed;
|
wolffd@0
|
115 hnodes = mysetdiff(1:ss, onodes);
|
wolffd@0
|
116 bnet.hidden_bitv = zeros(1,2*ss);
|
wolffd@0
|
117 bnet.hidden_bitv(hnodes) = 1;
|
wolffd@0
|
118 bnet.hidden_bitv(hnodes+ss) = 1;
|
wolffd@0
|
119
|
wolffd@0
|
120 bnet.parents = cell(1, 2*ss);
|
wolffd@0
|
121 for i=1:ss
|
wolffd@0
|
122 bnet.parents{i} = parents(bnet.dag, i);
|
wolffd@0
|
123 bnet.parents{i+ss} = parents(bnet.dag, i+ss);
|
wolffd@0
|
124 end
|
wolffd@0
|
125
|
wolffd@0
|
126 bnet.auto_regressive = zeros(1,ss);
|
wolffd@0
|
127 % ar(i)=1 means (observed) node i depends on i in the previous slice
|
wolffd@0
|
128 for o=bnet.observed(:)'
|
wolffd@0
|
129 if any(bnet.parents{o+ss} <= ss)
|
wolffd@0
|
130 bnet.auto_regressive(o) = 1;
|
wolffd@0
|
131 end
|
wolffd@0
|
132 end
|
wolffd@0
|
133
|