annotate toolboxes/FullBNT-1.0.7/bnt/general/mk_dbn.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function bnet = mk_dbn(intra, inter, node_sizes, varargin)
wolffd@0 2 % MK_DBN Make a Dynamic Bayesian Network.
wolffd@0 3 %
wolffd@0 4 % BNET = MK_DBN(INTRA, INTER, NODE_SIZES, ...) makes a DBN with arcs
wolffd@0 5 % from i in slice t to j in slice t iff intra(i,j) = 1, and
wolffd@0 6 % from i in slice t to j in slice t+1 iff inter(i,j) = 1,
wolffd@0 7 % for i,j in {1, 2, ..., n}, where n = num. nodes per slice, and t >= 1.
wolffd@0 8 % node_sizes(i) is the number of values node i can take on.
wolffd@0 9 % The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.
wolffd@0 10 % See also mk_bnet.
wolffd@0 11 %
wolffd@0 12 % Optional arguments [default in brackets]
wolffd@0 13 % 'discrete' - list of discrete nodes [1:n]
wolffd@0 14 % 'observed' - the list of nodes which will definitely be observed in every slice of every case [ [] ]
wolffd@0 15 % 'eclass1' - equiv class for slice 1 [1:n]
wolffd@0 16 % 'eclass2' - equiv class for slice 2 [tie nodes with equivalent parents to slice 1]
wolffd@0 17 % equiv_class1(i) = j means node i in slice 1 gets its parameters from bnet.CPD{j},
wolffd@0 18 % i.e., nodes i and j have tied parameters.
wolffd@0 19 % 'intra1' - topology of first slice, if different from others
wolffd@0 20 % 'names' - a cell array of strings to be associated with nodes 1:n [{}]
wolffd@0 21 % This creates an associative array, so you write e.g.
wolffd@0 22 % 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42'
wolffd@0 23 % assuming names = { 'foo', 'bar', ...}.
wolffd@0 24 %
wolffd@0 25 % For backwards compatibility with BNT2, arguments can also be specified as follows
wolffd@0 26 % bnet = mk_dbn(intra, inter, node_sizes, dnodes, eclass1, eclass2, intra1)
wolffd@0 27 %
wolffd@0 28 % After calling this function, you must specify the parameters (conditional probability
wolffd@0 29 % distributions) using bnet.CPD{i} = gaussian_CPD(...) or tabular_CPD(...) etc.
wolffd@0 30
wolffd@0 31
wolffd@0 32 n = length(intra);
wolffd@0 33 ss = n;
wolffd@0 34 bnet.nnodes_per_slice = ss;
wolffd@0 35 bnet.intra = intra;
wolffd@0 36 bnet.inter = inter;
wolffd@0 37 bnet.intra1 = intra;
wolffd@0 38 dag = zeros(2*n);
wolffd@0 39 dag(1:n,1:n) = bnet.intra1;
wolffd@0 40 dag(1:n,(1:n)+n) = bnet.inter;
wolffd@0 41 dag((1:n)+n,(1:n)+n) = bnet.intra;
wolffd@0 42 bnet.dag = dag;
wolffd@0 43 bnet.names = {};
wolffd@0 44
wolffd@0 45 directed = 1;
wolffd@0 46 if ~acyclic(dag,directed)
wolffd@0 47 error('graph must be acyclic')
wolffd@0 48 end
wolffd@0 49
wolffd@0 50
wolffd@0 51 bnet.eclass1 = 1:n;
wolffd@0 52 %bnet.eclass2 = (1:n)+n;
wolffd@0 53 bnet.eclass2 = bnet.eclass1;
wolffd@0 54 for i=1:ss
wolffd@0 55 if isequal(parents(dag, i+ss), parents(dag, i)+ss)
wolffd@0 56 %fprintf('%d has isomorphic parents, eclass %d\n', i, bnet.eclass2(i))
wolffd@0 57 else
wolffd@0 58 bnet.eclass2(i) = max(bnet.eclass2) + 1;
wolffd@0 59 %fprintf('%d has non isomorphic parents, eclass %d\n', i, bnet.eclass2(i))
wolffd@0 60 end
wolffd@0 61 end
wolffd@0 62
wolffd@0 63 dnodes = 1:n;
wolffd@0 64 bnet.observed = [];
wolffd@0 65
wolffd@0 66 if nargin >= 4
wolffd@0 67 args = varargin;
wolffd@0 68 nargs = length(args);
wolffd@0 69 if ~isstr(args{1})
wolffd@0 70 if nargs >= 1, dnodes = args{1}; end
wolffd@0 71 if nargs >= 2, bnet.eclass1 = args{2}; end
wolffd@0 72 if nargs >= 3, bnet.eclass2 = args{3}; end
wolffd@0 73 if nargs >= 4, bnet.intra1 = args{4}; end
wolffd@0 74 else
wolffd@0 75 for i=1:2:nargs
wolffd@0 76 switch args{i},
wolffd@0 77 case 'discrete', dnodes = args{i+1};
wolffd@0 78 case 'observed', bnet.observed = args{i+1};
wolffd@0 79 case 'eclass1', bnet.eclass1 = args{i+1};
wolffd@0 80 case 'eclass2', bnet.eclass2 = args{i+1};
wolffd@0 81 case 'intra1', bnet.intra1 = args{i+1};
wolffd@0 82 %case 'ar_hmm', bnet.ar_hmm = args{i+1}; % should check topology
wolffd@0 83 case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n));
wolffd@0 84 otherwise,
wolffd@0 85 error(['invalid argument name ' args{i}]);
wolffd@0 86 end
wolffd@0 87 end
wolffd@0 88 end
wolffd@0 89 end
wolffd@0 90
wolffd@0 91
wolffd@0 92 bnet.observed = sort(bnet.observed); % for comparing sets
wolffd@0 93 ns = node_sizes;
wolffd@0 94 bnet.node_sizes_slice = ns(:)';
wolffd@0 95 bnet.node_sizes = [ns(:) ns(:)];
wolffd@0 96
wolffd@0 97 cnodes = mysetdiff(1:n, dnodes);
wolffd@0 98 bnet.dnodes_slice = dnodes;
wolffd@0 99 bnet.cnodes_slice = cnodes;
wolffd@0 100 bnet.dnodes = [dnodes dnodes+n];
wolffd@0 101 bnet.cnodes = [cnodes cnodes+n];
wolffd@0 102
wolffd@0 103 bnet.equiv_class = [bnet.eclass1(:) bnet.eclass2(:)];
wolffd@0 104 bnet.CPD = cell(1,max(bnet.equiv_class(:)));
wolffd@0 105 eclass = bnet.equiv_class(:);
wolffd@0 106 E = max(eclass);
wolffd@0 107 bnet.rep_of_eclass = zeros(1,E);
wolffd@0 108 for e=1:E
wolffd@0 109 mems = find(eclass==e);
wolffd@0 110 bnet.rep_of_eclass(e) = mems(1);
wolffd@0 111 end
wolffd@0 112
wolffd@0 113 ss = n;
wolffd@0 114 onodes = bnet.observed;
wolffd@0 115 hnodes = mysetdiff(1:ss, onodes);
wolffd@0 116 bnet.hidden_bitv = zeros(1,2*ss);
wolffd@0 117 bnet.hidden_bitv(hnodes) = 1;
wolffd@0 118 bnet.hidden_bitv(hnodes+ss) = 1;
wolffd@0 119
wolffd@0 120 bnet.parents = cell(1, 2*ss);
wolffd@0 121 for i=1:ss
wolffd@0 122 bnet.parents{i} = parents(bnet.dag, i);
wolffd@0 123 bnet.parents{i+ss} = parents(bnet.dag, i+ss);
wolffd@0 124 end
wolffd@0 125
wolffd@0 126 bnet.auto_regressive = zeros(1,ss);
wolffd@0 127 % ar(i)=1 means (observed) node i depends on i in the previous slice
wolffd@0 128 for o=bnet.observed(:)'
wolffd@0 129 if any(bnet.parents{o+ss} <= ss)
wolffd@0 130 bnet.auto_regressive(o) = 1;
wolffd@0 131 end
wolffd@0 132 end
wolffd@0 133