annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/mk_water_dbn.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function bnet = mk_water_dbn(discrete_obs, obs_leaves)
wolffd@0 2 % MK_WATER_DBN
wolffd@0 3 % bnet = mk_water_dbn(discrete_obs, obs_leaves)
wolffd@0 4 %
wolffd@0 5 % If discrete_obs = 1 (default), the leaves are binary, else scalar Gaussians
wolffd@0 6 % If obs_leaves = 1, all the leaves are observed, otherwise rnd nodes are observed
wolffd@0 7 %
wolffd@0 8 % This is a model of the biological processes of a water purification plant, developed
wolffd@0 9 % by Finn V. Jensen, Uffe Kjærulff, Kristian G. Olesen, and Jan Pedersen.
wolffd@0 10 % See http://www-nt.cs.berkeley.edu/home/nir/public_html/Repository/water.htm
wolffd@0 11 % See also Boyen and Koller, "Tractable Inference for Complex Stochastic Processes", UAI98
wolffd@0 12
wolffd@0 13 if nargin < 1, discrete_obs = 1; end
wolffd@0 14 if nargin < 1, obs_leaves = 1; end
wolffd@0 15
wolffd@0 16 ss = 12;
wolffd@0 17 intra = zeros(ss);
wolffd@0 18 intra(1,9) = 1;
wolffd@0 19 intra(3,10) = 1;
wolffd@0 20 intra(4,11) = 1;
wolffd@0 21 intra(8,12) = 1;
wolffd@0 22
wolffd@0 23 inter = zeros(ss);
wolffd@0 24 inter(1, [1 3]) = 1;
wolffd@0 25 inter(2, [2 3 7]) = 1;
wolffd@0 26 inter(3, [3 4 5]) = 1;
wolffd@0 27 inter(4, [3 4 6]) = 1;
wolffd@0 28 inter(5, [3 5 6]) = 1;
wolffd@0 29 inter(6, [4 5 6]) = 1;
wolffd@0 30 inter(7, [7 8]) = 1;
wolffd@0 31 inter(8, [6 7 8]) = 1;
wolffd@0 32
wolffd@0 33 if obs_leaves
wolffd@0 34 onodes = 9:12; % leaves
wolffd@0 35 else
wolffd@0 36 onodes = [1 5 9:12]; % throw in some other nodes
wolffd@0 37 end
wolffd@0 38 hnodes = 1:8;
wolffd@0 39 if discrete_obs
wolffd@0 40 ns = 2*ones(1 ,ss);
wolffd@0 41 dnodes = 1:ss;
wolffd@0 42 else
wolffd@0 43 ns = [2*ones(1,length(hnodes)) 1*ones(length(onodes))];
wolffd@0 44 dnodes = hnodes;
wolffd@0 45 end
wolffd@0 46
wolffd@0 47 eclass1 = 1:12;
wolffd@0 48 eclass2 = [13:20 9:12];
wolffd@0 49 bnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ...
wolffd@0 50 'observed', onodes);
wolffd@0 51 if discrete_obs
wolffd@0 52 for i=1:max(eclass2)
wolffd@0 53 bnet.CPD{i} = tabular_CPD(bnet, i);
wolffd@0 54 end
wolffd@0 55 else
wolffd@0 56 for i=hnodes(:)'
wolffd@0 57 bnet.CPD{i} = tabular_CPD(bnet, i);
wolffd@0 58 end
wolffd@0 59 for i=onodes(:)'
wolffd@0 60 bnet.CPD{i} = gaussian_CPD(bnet, i);
wolffd@0 61 end
wolffd@0 62 for i=hnodes(:)'+ss
wolffd@0 63 bnet.CPD{i} = tabular_CPD(bnet, i);
wolffd@0 64 end
wolffd@0 65 end
wolffd@0 66
wolffd@0 67
wolffd@0 68