wolffd@0
|
1 % Make a linear dynamical system
|
wolffd@0
|
2 % X1 -> X2
|
wolffd@0
|
3 % | |
|
wolffd@0
|
4 % v v
|
wolffd@0
|
5 % Y1 Y2
|
wolffd@0
|
6
|
wolffd@0
|
7 intra = zeros(2);
|
wolffd@0
|
8 intra(1,2) = 1;
|
wolffd@0
|
9 inter = zeros(2);
|
wolffd@0
|
10 inter(1,1) = 1;
|
wolffd@0
|
11 n = 2;
|
wolffd@0
|
12
|
wolffd@0
|
13 X = 2; % size of hidden state
|
wolffd@0
|
14 Y = 2; % size of observable state
|
wolffd@0
|
15 ns = [X Y];
|
wolffd@0
|
16 bnet = mk_dbn(intra, inter, ns, 'discrete', [], 'observed', 2);
|
wolffd@0
|
17
|
wolffd@0
|
18 x0 = rand(X,1);
|
wolffd@0
|
19 V0 = eye(X);
|
wolffd@0
|
20 C0 = rand(Y,X);
|
wolffd@0
|
21 R0 = eye(Y);
|
wolffd@0
|
22 A0 = rand(X,X);
|
wolffd@0
|
23 Q0 = eye(X);
|
wolffd@0
|
24
|
wolffd@0
|
25 bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0, 'cov_prior_weight', 0);
|
wolffd@0
|
26 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, ...
|
wolffd@0
|
27 'clamp_mean', 1, 'cov_prior_weight', 0);
|
wolffd@0
|
28 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, ...
|
wolffd@0
|
29 'clamp_mean', 1, 'cov_prior_weight', 0);
|
wolffd@0
|
30
|
wolffd@0
|
31
|
wolffd@0
|
32 T = 5; % fixed length sequences
|
wolffd@0
|
33
|
wolffd@0
|
34 clear engine;
|
wolffd@0
|
35 engine{1} = kalman_inf_engine(bnet);
|
wolffd@0
|
36 engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T);
|
wolffd@0
|
37 engine{3} = jtree_dbn_inf_engine(bnet);
|
wolffd@0
|
38 engine{end+1} = smoother_engine(jtree_2TBN_inf_engine(bnet));
|
wolffd@0
|
39 N = length(engine);
|
wolffd@0
|
40
|
wolffd@0
|
41
|
wolffd@0
|
42 inf_time = cmp_inference_dbn(bnet, engine, T);
|
wolffd@0
|
43
|
wolffd@0
|
44 ncases = 2;
|
wolffd@0
|
45 max_iter = 2;
|
wolffd@0
|
46 [learning_time, CPD, LL, cases] = cmp_learning_dbn(bnet, engine, T, 'ncases', ncases, 'max_iter', max_iter);
|
wolffd@0
|
47
|
wolffd@0
|
48
|
wolffd@0
|
49 % Compare to KF toolbox
|
wolffd@0
|
50
|
wolffd@0
|
51 data = zeros(Y, T, ncases);
|
wolffd@0
|
52 for i=1:ncases
|
wolffd@0
|
53 data(:,:,i) = cell2num(cases{i}(onodes, :));
|
wolffd@0
|
54 end
|
wolffd@0
|
55 [A2, C2, Q2, R2, x2, V2, LL2trace] = learn_kalman(data, A0, C0, Q0, R0, x0, V0, max_iter);
|
wolffd@0
|
56
|
wolffd@0
|
57
|
wolffd@0
|
58 e = 1;
|
wolffd@0
|
59 assert(approxeq(x2, CPD{e,1}.mean))
|
wolffd@0
|
60 assert(approxeq(V2, CPD{e,1}.cov))
|
wolffd@0
|
61 assert(approxeq(C2, CPD{e,2}.weights))
|
wolffd@0
|
62 assert(approxeq(R2, CPD{e,2}.cov));
|
wolffd@0
|
63 assert(approxeq(A2, CPD{e,3}.weights))
|
wolffd@0
|
64 assert(approxeq(Q2, CPD{e,3}.cov));
|
wolffd@0
|
65 assert(approxeq(LL2trace, LL{1}))
|
wolffd@0
|
66
|