wolffd@0
|
1 % This is like skf_data_assoc_gmux, except the objects don't move.
|
wolffd@0
|
2 % We are uncertain of their initial positions, and get more and more observations
|
wolffd@0
|
3 % over time. The goal is to test deterministic links (0 covariance).
|
wolffd@0
|
4 % This is like robot1, except the robot doesn't move and is always at [0 0],
|
wolffd@0
|
5 % so the relative location is simply L(s).
|
wolffd@0
|
6
|
wolffd@0
|
7 nobj = 2;
|
wolffd@0
|
8 N = nobj+2;
|
wolffd@0
|
9 Xs = 1:nobj;
|
wolffd@0
|
10 S = nobj+1;
|
wolffd@0
|
11 Y = nobj+2;
|
wolffd@0
|
12
|
wolffd@0
|
13 intra = zeros(N,N);
|
wolffd@0
|
14 inter = zeros(N,N);
|
wolffd@0
|
15 intra([Xs S], Y) =1;
|
wolffd@0
|
16 for i=1:nobj
|
wolffd@0
|
17 inter(Xs(i), Xs(i))=1;
|
wolffd@0
|
18 end
|
wolffd@0
|
19
|
wolffd@0
|
20 Xsz = 2; % state space = (x y)
|
wolffd@0
|
21 Ysz = 2;
|
wolffd@0
|
22 ns = zeros(1,N);
|
wolffd@0
|
23 ns(Xs) = Xsz;
|
wolffd@0
|
24 ns(Y) = Ysz;
|
wolffd@0
|
25 ns(S) = nobj;
|
wolffd@0
|
26
|
wolffd@0
|
27 bnet = mk_dbn(intra, inter, ns, 'discrete', S, 'observed', [S Y]);
|
wolffd@0
|
28
|
wolffd@0
|
29 % For each object, we have
|
wolffd@0
|
30 % X(t+1) = F X(t) + noise(Q)
|
wolffd@0
|
31 % Y(t) = H X(t) + noise(R)
|
wolffd@0
|
32 F = eye(2);
|
wolffd@0
|
33 H = eye(2);
|
wolffd@0
|
34 Q = 0*eye(Xsz); % no noise in dynamics
|
wolffd@0
|
35 R = eye(Ysz);
|
wolffd@0
|
36
|
wolffd@0
|
37 init_state{1} = [10 10]';
|
wolffd@0
|
38 init_state{2} = [10 -10]';
|
wolffd@0
|
39 init_cov = eye(2);
|
wolffd@0
|
40
|
wolffd@0
|
41 % Uncertain of initial state (position)
|
wolffd@0
|
42 for i=1:nobj
|
wolffd@0
|
43 bnet.CPD{Xs(i)} = gaussian_CPD(bnet, Xs(i), 'mean', init_state{i}, 'cov', init_cov);
|
wolffd@0
|
44 end
|
wolffd@0
|
45 bnet.CPD{S} = root_CPD(bnet, S); % always observed
|
wolffd@0
|
46 bnet.CPD{Y} = gmux_CPD(bnet, Y, 'cov', repmat(R, [1 1 nobj]), 'weights', repmat(H, [1 1 nobj]));
|
wolffd@0
|
47 % slice 2
|
wolffd@0
|
48 eclass = bnet.equiv_class;
|
wolffd@0
|
49 for i=1:nobj
|
wolffd@0
|
50 bnet.CPD{eclass(Xs(i), 2)} = gaussian_CPD(bnet, Xs(i)+N, 'mean', zeros(Xsz,1), 'cov', Q, 'weights', F);
|
wolffd@0
|
51 end
|
wolffd@0
|
52
|
wolffd@0
|
53 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
wolffd@0
|
54 % Create LDS params
|
wolffd@0
|
55
|
wolffd@0
|
56 % X(t) = A X(t-1) + B U(t) + noise(Q)
|
wolffd@0
|
57
|
wolffd@0
|
58 % [L11] = [1 ] * [L1] + [Q ]
|
wolffd@0
|
59 % [L2] [ 1] [L2] [ Q]
|
wolffd@0
|
60
|
wolffd@0
|
61 % Y(t)|S(t)=s = C(s) X(t) + noise(R)
|
wolffd@0
|
62 % Yt|St=1 = [1 0] * [L1] + R
|
wolffd@0
|
63 % [L2]
|
wolffd@0
|
64
|
wolffd@0
|
65 nlandmarks = nobj;
|
wolffd@0
|
66
|
wolffd@0
|
67 % Create indices into block structure
|
wolffd@0
|
68 bs = 2*ones(1, nobj); % sizes of blocks in state space
|
wolffd@0
|
69 for i=1:nlandmarks
|
wolffd@0
|
70 landmark_block(:,i) = block(i, bs)';
|
wolffd@0
|
71 end
|
wolffd@0
|
72 Xsz = 2*(nlandmarks); % 2 values for each landmark plus robot
|
wolffd@0
|
73 Ysz = 2; % observe relative location
|
wolffd@0
|
74
|
wolffd@0
|
75 % create block-diagonal trans matrix for each switch
|
wolffd@0
|
76 A = zeros(Xsz, Xsz);
|
wolffd@0
|
77 for i=1:nlandmarks
|
wolffd@0
|
78 bi = landmark_block(:,i);
|
wolffd@0
|
79 A(bi, bi) = eye(2);
|
wolffd@0
|
80 end
|
wolffd@0
|
81 A = repmat(A, [1 1 nlandmarks]); % same for all switch values
|
wolffd@0
|
82
|
wolffd@0
|
83 % create block-diagonal system cov
|
wolffd@0
|
84 Qbig = zeros(Xsz, Xsz);
|
wolffd@0
|
85 Qbig = repmat(Qbig, [1 1 nlandmarks]);
|
wolffd@0
|
86
|
wolffd@0
|
87
|
wolffd@0
|
88 % create observation matrix for each value of the switch node
|
wolffd@0
|
89 % C(:,:,i) = (0 ... I ...) where the I is in the i'th posn.
|
wolffd@0
|
90 C = zeros(Ysz, Xsz, nlandmarks);
|
wolffd@0
|
91 for i=1:nlandmarks
|
wolffd@0
|
92 C(:, landmark_block(:,i), i) = eye(2);
|
wolffd@0
|
93 end
|
wolffd@0
|
94
|
wolffd@0
|
95 % create observation cov for each value of the switch node
|
wolffd@0
|
96 Rbig = repmat(R, [1 1 nlandmarks]);
|
wolffd@0
|
97
|
wolffd@0
|
98 % initial conditions
|
wolffd@0
|
99 init_x = [init_state{1}; init_state{2}];
|
wolffd@0
|
100 init_V = zeros(Xsz, Xsz);
|
wolffd@0
|
101 for i=1:nlandmarks
|
wolffd@0
|
102 bi = landmark_block(:,i);
|
wolffd@0
|
103 init_V(bi,bi) = init_cov;
|
wolffd@0
|
104 end
|
wolffd@0
|
105
|
wolffd@0
|
106
|
wolffd@0
|
107
|
wolffd@0
|
108 %%%%%%%%%%%%%%%%
|
wolffd@0
|
109 % Observe objects at random
|
wolffd@0
|
110 T = 10;
|
wolffd@0
|
111 evidence = cell(N, T);
|
wolffd@0
|
112 data_assoc = sample_discrete(normalise(ones(1,nobj)), 1, T);
|
wolffd@0
|
113 evidence(S,:) = num2cell(data_assoc);
|
wolffd@0
|
114 evidence = sample_dbn(bnet, 'evidence', evidence);
|
wolffd@0
|
115
|
wolffd@0
|
116
|
wolffd@0
|
117 % Inference
|
wolffd@0
|
118 ev = cell(N,T);
|
wolffd@0
|
119 ev(bnet.observed,:) = evidence(bnet.observed, :);
|
wolffd@0
|
120 y = cell2num(evidence(Y,:));
|
wolffd@0
|
121
|
wolffd@0
|
122 engine = pearl_unrolled_dbn_inf_engine(bnet);
|
wolffd@0
|
123 engine = enter_evidence(engine, ev);
|
wolffd@0
|
124
|
wolffd@0
|
125 loopy_est_pos = zeros(2, nlandmarks);
|
wolffd@0
|
126 loopy_est_pos_cov = zeros(2, 2, nlandmarks);
|
wolffd@0
|
127 for i=1:nobj
|
wolffd@0
|
128 m = marginal_nodes(engine, Xs(i), T);
|
wolffd@0
|
129 loopy_est_pos(:,i) = m.mu;
|
wolffd@0
|
130 loopy_est_pos_cov(:,:,i) = m.Sigma;
|
wolffd@0
|
131 end
|
wolffd@0
|
132
|
wolffd@0
|
133
|
wolffd@0
|
134 [xsmooth, Vsmooth] = kalman_smoother(y, A, C, Qbig, Rbig, init_x, init_V, 'model', data_assoc);
|
wolffd@0
|
135
|
wolffd@0
|
136 kf_est_pos = zeros(2, nlandmarks);
|
wolffd@0
|
137 kf_est_pos_cov = zeros(2, 2, nlandmarks);
|
wolffd@0
|
138 for i=1:nlandmarks
|
wolffd@0
|
139 bi = landmark_block(:,i);
|
wolffd@0
|
140 kf_est_pos(:,i) = xsmooth(bi, T);
|
wolffd@0
|
141 kf_est_pos_cov(:,:,i) = Vsmooth(bi, bi, T);
|
wolffd@0
|
142 end
|
wolffd@0
|
143
|
wolffd@0
|
144
|
wolffd@0
|
145 kf_est_pos
|
wolffd@0
|
146 loopy_est_pos
|
wolffd@0
|
147
|
wolffd@0
|
148 kf_est_pos_time = zeros(2, nlandmarks, T);
|
wolffd@0
|
149 for t=1:T
|
wolffd@0
|
150 for i=1:nlandmarks
|
wolffd@0
|
151 bi = landmark_block(:,i);
|
wolffd@0
|
152 kf_est_pos_time(:,i,t) = xsmooth(bi, t);
|
wolffd@0
|
153 end
|
wolffd@0
|
154 end
|
wolffd@0
|
155 kf_est_pos_time % same for all t since smoothed
|