wolffd@0
|
1 function bnet = mk_map_hhmm(varargin)
|
wolffd@0
|
2
|
wolffd@0
|
3 % p is the prob of a successful move (defines the reliability of motors)
|
wolffd@0
|
4 p = 1;
|
wolffd@0
|
5 obs_model = 'unique';
|
wolffd@0
|
6
|
wolffd@0
|
7 for i=1:2:length(varargin)
|
wolffd@0
|
8 switch varargin{i},
|
wolffd@0
|
9 case 'p', p = varargin{i+1};
|
wolffd@0
|
10 case 'obs_model', obs_model = varargin{i+1};
|
wolffd@0
|
11 end
|
wolffd@0
|
12 end
|
wolffd@0
|
13
|
wolffd@0
|
14
|
wolffd@0
|
15 q = 1-p;
|
wolffd@0
|
16 unique_obs = strcmp(obs_model, 'unique');
|
wolffd@0
|
17
|
wolffd@0
|
18 % assign numbers to the nodes in topological order
|
wolffd@0
|
19 U = 1; A = 2; C = 3; F = 4;
|
wolffd@0
|
20 if unique_obs
|
wolffd@0
|
21 onodes = 5;
|
wolffd@0
|
22 else
|
wolffd@0
|
23 N = 5; E = 6; S = 7; W = 8; % north, east, south, west
|
wolffd@0
|
24 onodes = [N E S W];
|
wolffd@0
|
25 end
|
wolffd@0
|
26
|
wolffd@0
|
27 % create graph structure
|
wolffd@0
|
28
|
wolffd@0
|
29 ss = 4 + length(onodes); % slice size
|
wolffd@0
|
30 intra = zeros(ss,ss);
|
wolffd@0
|
31 intra(U,F)=1;
|
wolffd@0
|
32 intra(A,[C F onodes])=1;
|
wolffd@0
|
33 intra(C,[F onodes])=1;
|
wolffd@0
|
34
|
wolffd@0
|
35 inter = zeros(ss,ss);
|
wolffd@0
|
36 inter(U,[A C])=1;
|
wolffd@0
|
37 inter(A,[A C])=1;
|
wolffd@0
|
38 inter(F,[A C])=1;
|
wolffd@0
|
39 inter(C,C)=1;
|
wolffd@0
|
40
|
wolffd@0
|
41 % node sizes
|
wolffd@0
|
42 ns = zeros(1,ss);
|
wolffd@0
|
43 ns(U) = 2; % left/right
|
wolffd@0
|
44 ns(A) = 2;
|
wolffd@0
|
45 ns(C) = 3;
|
wolffd@0
|
46 ns(F) = 2;
|
wolffd@0
|
47 if unique_obs
|
wolffd@0
|
48 ns(onodes) = 5; % we will assign each state a unique symbol
|
wolffd@0
|
49 else
|
wolffd@0
|
50 ns(onodes) = 2;
|
wolffd@0
|
51 end
|
wolffd@0
|
52 l = 1; r = 2; % left/right
|
wolffd@0
|
53 L = 1; R = 2;
|
wolffd@0
|
54
|
wolffd@0
|
55 % Make the DBN
|
wolffd@0
|
56 bnet = mk_dbn(intra, inter, ns, 'observed', onodes);
|
wolffd@0
|
57 eclass = bnet.equiv_class;
|
wolffd@0
|
58
|
wolffd@0
|
59
|
wolffd@0
|
60
|
wolffd@0
|
61 % Define CPDs for slice 1
|
wolffd@0
|
62 % We clamp all the CPDs that are not tied,
|
wolffd@0
|
63 % since we cannot learn them from a single sequence.
|
wolffd@0
|
64
|
wolffd@0
|
65 % uniform probs over actions (the input could be chosen from a policy)
|
wolffd@0
|
66 bnet.CPD{eclass(U,1)} = tabular_CPD(bnet, U, 'CPT', mk_stochastic(ones(ns(U),1)), ...
|
wolffd@0
|
67 'adjustable', 0);
|
wolffd@0
|
68
|
wolffd@0
|
69 % uniform probs over starting abstract state
|
wolffd@0
|
70 bnet.CPD{eclass(A,1)} = tabular_CPD(bnet, A, 'CPT', mk_stochastic(ones(ns(A),1)), ...
|
wolffd@0
|
71 'adjustable', 0);
|
wolffd@0
|
72
|
wolffd@0
|
73 % Uniform probs over starting concrete state, modulo the fact
|
wolffd@0
|
74 % that corridor 2 is only of length 2.
|
wolffd@0
|
75 CPT = zeros(ns(A), ns(C)); % CPT(i,j) = P(C starts in j | A=i)
|
wolffd@0
|
76 CPT(1, :) = [1/3 1/3 1/3];
|
wolffd@0
|
77 CPT(2, :) = [1/2 1/2 0];
|
wolffd@0
|
78 bnet.CPD{eclass(C,1)} = tabular_CPD(bnet, C, 'CPT', CPT, 'adjustable', 0);
|
wolffd@0
|
79
|
wolffd@0
|
80 % Termination probs
|
wolffd@0
|
81 CPT = zeros(ns(U), ns(A), ns(C), ns(F));
|
wolffd@0
|
82 CPT(r,1,1,:) = [1 0];
|
wolffd@0
|
83 CPT(r,1,2,:) = [1 0];
|
wolffd@0
|
84 CPT(r,1,3,:) = [q p];
|
wolffd@0
|
85 CPT(r,2,1,:) = [1 0];
|
wolffd@0
|
86 CPT(r,2,2,:) = [q p];
|
wolffd@0
|
87 CPT(l,1,1,:) = [q p];
|
wolffd@0
|
88 CPT(l,1,2,:) = [1 0];
|
wolffd@0
|
89 CPT(l,1,3,:) = [1 0];
|
wolffd@0
|
90 CPT(l,2,1,:) = [q p];
|
wolffd@0
|
91 CPT(l,2,2,:) = [1 0];
|
wolffd@0
|
92
|
wolffd@0
|
93 bnet.CPD{eclass(F,1)} = tabular_CPD(bnet, F, 'CPT', CPT);
|
wolffd@0
|
94
|
wolffd@0
|
95
|
wolffd@0
|
96 % Observation model
|
wolffd@0
|
97 if unique_obs
|
wolffd@0
|
98 CPT = zeros(ns(A), ns(C), 5);
|
wolffd@0
|
99 CPT(1,1,1)=1; % Theo state 4
|
wolffd@0
|
100 CPT(1,2,2)=1; % Theo state 5
|
wolffd@0
|
101 CPT(1,3,3)=1; % Theo state 6
|
wolffd@0
|
102 CPT(2,1,4)=1; % Theo state 9
|
wolffd@0
|
103 CPT(2,2,5)=1; % Theo state 10
|
wolffd@0
|
104 %CPT(2,3,:) undefined
|
wolffd@0
|
105 O = onodes(1);
|
wolffd@0
|
106 bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', CPT);
|
wolffd@0
|
107 else
|
wolffd@0
|
108 % north/east/south/west can see wall (1) or opening (2)
|
wolffd@0
|
109 CPT = zeros(ns(A), ns(C), 2);
|
wolffd@0
|
110 CPT(:,:,1) = q;
|
wolffd@0
|
111 CPT(:,:,2) = p;
|
wolffd@0
|
112 bnet.CPD{eclass(W,1)} = tabular_CPD(bnet, W, 'CPT', CPT);
|
wolffd@0
|
113 bnet.CPD{eclass(E,1)} = tabular_CPD(bnet, E, 'CPT', CPT);
|
wolffd@0
|
114 CPT = zeros(ns(A), ns(C), 2);
|
wolffd@0
|
115 CPT(:,:,1) = p;
|
wolffd@0
|
116 CPT(:,:,2) = q;
|
wolffd@0
|
117 bnet.CPD{eclass(S,1)} = tabular_CPD(bnet, S, 'CPT', CPT);
|
wolffd@0
|
118 bnet.CPD{eclass(N,1)} = tabular_CPD(bnet, N, 'CPT', CPT);
|
wolffd@0
|
119 end
|
wolffd@0
|
120
|
wolffd@0
|
121 % Define the CPDs for slice 2
|
wolffd@0
|
122
|
wolffd@0
|
123 % Abstract
|
wolffd@0
|
124
|
wolffd@0
|
125 % Since the top level never resets, the starting distribution is irrelevant:
|
wolffd@0
|
126 % A2 will be determined by sampling from transmat(A1,:).
|
wolffd@0
|
127 % But the code requires we specify it anyway; we make it all 0s, a dummy value.
|
wolffd@0
|
128 startprob = zeros(ns(U), ns(A));
|
wolffd@0
|
129
|
wolffd@0
|
130 transmat = zeros(ns(U), ns(A), ns(A));
|
wolffd@0
|
131 transmat(R,1,:) = [q p];
|
wolffd@0
|
132 transmat(R,2,:) = [0 1];
|
wolffd@0
|
133 transmat(L,1,:) = [1 0];
|
wolffd@0
|
134 transmat(L,2,:) = [p q];
|
wolffd@0
|
135
|
wolffd@0
|
136 % Qps are the parents we condition the parameters on, in this case just
|
wolffd@0
|
137 % the past action.
|
wolffd@0
|
138 bnet.CPD{eclass(A,2)} = hhmm2Q_CPD(bnet, A+ss, 'Fbelow', F, ...
|
wolffd@0
|
139 'startprob', startprob, 'transprob', transmat);
|
wolffd@0
|
140
|
wolffd@0
|
141
|
wolffd@0
|
142
|
wolffd@0
|
143 % Concrete
|
wolffd@0
|
144
|
wolffd@0
|
145 transmat = zeros(ns(C), ns(U), ns(A), ns(C));
|
wolffd@0
|
146 transmat(1,r,1,:) = [q p 0.0];
|
wolffd@0
|
147 transmat(2,r,1,:) = [0.0 q p];
|
wolffd@0
|
148 transmat(3,r,1,:) = [0.0 0.0 1.0];
|
wolffd@0
|
149 transmat(1,r,2,:) = [q p 0.0];
|
wolffd@0
|
150 transmat(2,r,2,:) = [0.0 1.0 0.0];
|
wolffd@0
|
151 %
|
wolffd@0
|
152 transmat(1,l,1,:) = [1.0 0.0 0.0];
|
wolffd@0
|
153 transmat(2,l,1,:) = [p q 0.0];
|
wolffd@0
|
154 transmat(3,l,1,:) = [0.0 p q];
|
wolffd@0
|
155 transmat(1,l,2,:) = [1.0 0.0 0.0];
|
wolffd@0
|
156 transmat(2,l,2,:) = [p q 0.0];
|
wolffd@0
|
157
|
wolffd@0
|
158 % Add a new dimension for A(t-1), by copying old vals,
|
wolffd@0
|
159 % so the matrix is the same size as startprob
|
wolffd@0
|
160
|
wolffd@0
|
161
|
wolffd@0
|
162 transmat = reshape(transmat, [ns(C) ns(U) ns(A) 1 ns(C)]);
|
wolffd@0
|
163 transmat = repmat(transmat, [1 1 1 ns(A) 1]);
|
wolffd@0
|
164
|
wolffd@0
|
165 % startprob(C(t-1), U(t-1), A(t-1), A(t), C(t))
|
wolffd@0
|
166 startprob = zeros(ns(C), ns(U), ns(A), ns(A), ns(C));
|
wolffd@0
|
167 startprob(1,L,1,1,:) = [1.0 0.0 0.0];
|
wolffd@0
|
168 startprob(3,R,1,2,:) = [1.0 0.0 0.0];
|
wolffd@0
|
169 startprob(3,R,1,1,:) = [0.0 0.0 1.0];
|
wolffd@0
|
170 %
|
wolffd@0
|
171 startprob(1,L,2,1,:) = [0.0 0.0 010];
|
wolffd@0
|
172 startprob(2,L,2,1,:) = [1.0 0.0 0.0];
|
wolffd@0
|
173 startprob(2,R,2,2,:) = [0.0 1.0 0.0];
|
wolffd@0
|
174
|
wolffd@0
|
175 % want transmat(U,A,C,At,Ct), ie. in topo order
|
wolffd@0
|
176 transmat = permute(transmat, [2 3 1 4 5]);
|
wolffd@0
|
177 startprob = permute(startprob, [2 3 1 4 5]);
|
wolffd@0
|
178 bnet.CPD{eclass(C,2)} = hhmm2Q_CPD(bnet, C+ss, 'Fself', F, ...
|
wolffd@0
|
179 'startprob', startprob, 'transprob', transmat);
|
wolffd@0
|
180
|
wolffd@0
|
181
|