wolffd@0
|
1 function CPD = tabular_CPD(bnet, self, varargin)
|
wolffd@0
|
2 % TABULAR_CPD Make a multinomial conditional prob. distrib. (CPT)
|
wolffd@0
|
3 %
|
wolffd@0
|
4 % CPD = tabular_CPD(bnet, node) creates a random CPT.
|
wolffd@0
|
5 %
|
wolffd@0
|
6 % The following arguments can be specified [default in brackets]
|
wolffd@0
|
7 %
|
wolffd@0
|
8 % CPT - specifies the params ['rnd']
|
wolffd@0
|
9 % - T means use table T; it will be reshaped to the size of node's family.
|
wolffd@0
|
10 % - 'rnd' creates rnd params (drawn from uniform)
|
wolffd@0
|
11 % - 'unif' creates a uniform distribution
|
wolffd@0
|
12 % adjustable - 0 means don't adjust the parameters during learning [1]
|
wolffd@0
|
13 % prior_type - defines type of prior ['none']
|
wolffd@0
|
14 % - 'none' means do ML estimation
|
wolffd@0
|
15 % - 'dirichlet' means add pseudo-counts to every cell
|
wolffd@0
|
16 % - 'entropic' means use a prior P(theta) propto exp(-H(theta)) (see Brand)
|
wolffd@0
|
17 % dirichlet_weight - equivalent sample size (ess) of the dirichlet prior [1]
|
wolffd@0
|
18 % dirichlet_type - defines the type of Dirichlet prior ['BDeu']
|
wolffd@0
|
19 % - 'unif' means put dirichlet_weight in every cell
|
wolffd@0
|
20 % - 'BDeu' means we put 'dirichlet_weight/(r q)' in every cell
|
wolffd@0
|
21 % where r = self_sz and q = prod(parent_sz) (see Heckerman)
|
wolffd@0
|
22 % trim - 1 means trim redundant params (rows in CPT) when using entropic prior [0]
|
wolffd@0
|
23 % entropic_pcases - list of assignments to the parents nodes when we should use
|
wolffd@0
|
24 % the entropic prior; all other cases will be estimated using ML [1:psz]
|
wolffd@0
|
25 % sparse - 1 means use 1D sparse array to represent CPT [0]
|
wolffd@0
|
26 %
|
wolffd@0
|
27 % e.g., tabular_CPD(bnet, i, 'CPT', T)
|
wolffd@0
|
28 % e.g., tabular_CPD(bnet, i, 'CPT', 'unif', 'dirichlet_weight', 2, 'dirichlet_type', 'unif')
|
wolffd@0
|
29 %
|
wolffd@0
|
30 % REFERENCES
|
wolffd@0
|
31 % M. Brand - "Structure learning in conditional probability models via an entropic prior
|
wolffd@0
|
32 % and parameter extinction", Neural Computation 11 (1999): 1155--1182
|
wolffd@0
|
33 % M. Brand - "Pattern discovery via entropy minimization" [covers annealing]
|
wolffd@0
|
34 % AI & Statistics 1999. Equation numbers refer to this paper, which is available from
|
wolffd@0
|
35 % www.merl.com/reports/docs/TR98-21.pdf
|
wolffd@0
|
36 % D. Heckerman, D. Geiger and M. Chickering,
|
wolffd@0
|
37 % "Learning Bayesian networks: the combination of knowledge and statistical data",
|
wolffd@0
|
38 % Microsoft Research Tech Report, 1994
|
wolffd@0
|
39
|
wolffd@0
|
40
|
wolffd@0
|
41 if nargin==0
|
wolffd@0
|
42 % This occurs if we are trying to load an object from a file.
|
wolffd@0
|
43 CPD = init_fields;
|
wolffd@0
|
44 CPD = class(CPD, 'tabular_CPD', discrete_CPD(0, []));
|
wolffd@0
|
45 return;
|
wolffd@0
|
46 elseif isa(bnet, 'tabular_CPD')
|
wolffd@0
|
47 % This might occur if we are copying an object.
|
wolffd@0
|
48 CPD = bnet;
|
wolffd@0
|
49 return;
|
wolffd@0
|
50 end
|
wolffd@0
|
51 CPD = init_fields;
|
wolffd@0
|
52
|
wolffd@0
|
53 ns = bnet.node_sizes;
|
wolffd@0
|
54 ps = parents(bnet.dag, self);
|
wolffd@0
|
55 fam_sz = ns([ps self]);
|
wolffd@0
|
56 psz = prod(ns(ps));
|
wolffd@0
|
57 CPD.sizes = fam_sz;
|
wolffd@0
|
58 CPD.leftright = 0;
|
wolffd@0
|
59 CPD.sparse = 0;
|
wolffd@0
|
60
|
wolffd@0
|
61 % set defaults
|
wolffd@0
|
62 CPD.CPT = mk_stochastic(myrand(fam_sz));
|
wolffd@0
|
63 CPD.adjustable = 1;
|
wolffd@0
|
64 CPD.prior_type = 'none';
|
wolffd@0
|
65 dirichlet_type = 'BDeu';
|
wolffd@0
|
66 dirichlet_weight = 1;
|
wolffd@0
|
67 CPD.trim = 0;
|
wolffd@0
|
68 selfprob = 0.1;
|
wolffd@0
|
69 CPD.entropic_pcases = 1:psz;
|
wolffd@0
|
70
|
wolffd@0
|
71 % extract optional args
|
wolffd@0
|
72 args = varargin;
|
wolffd@0
|
73 % check for old syntax CPD(bnet, i, CPT) as opposed to CPD(bnet, i, 'CPT', CPT)
|
wolffd@0
|
74 if ~isempty(args) & ~isstr(args{1})
|
wolffd@0
|
75 CPD.CPT = myreshape(args{1}, fam_sz);
|
wolffd@0
|
76 args = [];
|
wolffd@0
|
77 end
|
wolffd@0
|
78
|
wolffd@0
|
79 for i=1:2:length(args)
|
wolffd@0
|
80 switch args{i},
|
wolffd@0
|
81 case 'CPT',
|
wolffd@0
|
82 T = args{i+1};
|
wolffd@0
|
83 if ischar(T)
|
wolffd@0
|
84 switch T
|
wolffd@0
|
85 case 'unif', CPD.CPT = mk_stochastic(myones(fam_sz));
|
wolffd@0
|
86 case 'rnd', CPD.CPT = mk_stochastic(myrand(fam_sz));
|
wolffd@0
|
87 otherwise, error(['invalid CPT ' T]);
|
wolffd@0
|
88 end
|
wolffd@0
|
89 else
|
wolffd@0
|
90 CPD.CPT = myreshape(T, fam_sz);
|
wolffd@0
|
91 end
|
wolffd@0
|
92 case 'prior_type', CPD.prior_type = args{i+1};
|
wolffd@0
|
93 case 'dirichlet_type', dirichlet_type = args{i+1};
|
wolffd@0
|
94 case 'dirichlet_weight', dirichlet_weight = args{i+1};
|
wolffd@0
|
95 case 'adjustable', CPD.adjustable = args{i+1};
|
wolffd@0
|
96 case 'clamped', CPD.adjustable = ~args{i+1};
|
wolffd@0
|
97 case 'trim', CPD.trim = args{i+1};
|
wolffd@0
|
98 case 'entropic_pcases', CPD.entropic_pcases = args{i+1};
|
wolffd@0
|
99 case 'sparse', CPD.sparse = args{i+1};
|
wolffd@0
|
100 otherwise, error(['invalid argument name: ' args{i}]);
|
wolffd@0
|
101 end
|
wolffd@0
|
102 end
|
wolffd@0
|
103
|
wolffd@0
|
104 switch CPD.prior_type
|
wolffd@0
|
105 case 'dirichlet',
|
wolffd@0
|
106 switch dirichlet_type
|
wolffd@0
|
107 case 'unif', CPD.dirichlet = dirichlet_weight * myones(fam_sz);
|
wolffd@0
|
108 case 'BDeu', CPD.dirichlet = (dirichlet_weight/psz) * mk_stochastic(myones(fam_sz));
|
wolffd@0
|
109 otherwise, error(['invalid dirichlet_type ' dirichlet_type])
|
wolffd@0
|
110 end
|
wolffd@0
|
111 case {'entropic', 'none'}
|
wolffd@0
|
112 CPD.dirichlet = [];
|
wolffd@0
|
113 otherwise, error(['invalid prior_type ' prior_type])
|
wolffd@0
|
114 end
|
wolffd@0
|
115
|
wolffd@0
|
116
|
wolffd@0
|
117
|
wolffd@0
|
118 % fields to do with learning
|
wolffd@0
|
119 if ~CPD.adjustable
|
wolffd@0
|
120 CPD.counts = [];
|
wolffd@0
|
121 CPD.nparams = 0;
|
wolffd@0
|
122 CPD.nsamples = [];
|
wolffd@0
|
123 else
|
wolffd@0
|
124 %CPD.counts = zeros(size(CPD.CPT));
|
wolffd@0
|
125 CPD.counts = zeros(prod(size(CPD.CPT)), 1);
|
wolffd@0
|
126 psz = fam_sz(1:end-1);
|
wolffd@0
|
127 ss = fam_sz(end);
|
wolffd@0
|
128 if CPD.leftright
|
wolffd@0
|
129 % For each of the Qps contexts, we specify Q elements on the diagoanl
|
wolffd@0
|
130 CPD.nparams = Qps * Q;
|
wolffd@0
|
131 else
|
wolffd@0
|
132 % sum-to-1 constraint reduces the effective arity of the node by 1
|
wolffd@0
|
133 CPD.nparams = prod([psz ss-1]);
|
wolffd@0
|
134 end
|
wolffd@0
|
135 CPD.nsamples = 0;
|
wolffd@0
|
136 end
|
wolffd@0
|
137
|
wolffd@0
|
138 CPD.trimmed_trans = [];
|
wolffd@0
|
139 fam_sz = CPD.sizes;
|
wolffd@0
|
140
|
wolffd@0
|
141 %psz = prod(fam_sz(1:end-1));
|
wolffd@0
|
142 %ssz = fam_sz(end);
|
wolffd@0
|
143 %CPD.trimmed_trans = zeros(psz, ssz); % must declare before reading
|
wolffd@0
|
144
|
wolffd@0
|
145 %sparse CPT
|
wolffd@0
|
146 if CPD.sparse
|
wolffd@0
|
147 CPD.CPT = sparse(CPD.CPT(:));
|
wolffd@0
|
148 end
|
wolffd@0
|
149
|
wolffd@0
|
150 CPD = class(CPD, 'tabular_CPD', discrete_CPD(~CPD.adjustable, fam_sz));
|
wolffd@0
|
151
|
wolffd@0
|
152
|
wolffd@0
|
153 %%%%%%%%%%%
|
wolffd@0
|
154
|
wolffd@0
|
155 function CPD = init_fields()
|
wolffd@0
|
156 % This ensures we define the fields in the same order
|
wolffd@0
|
157 % no matter whether we load an object from a file,
|
wolffd@0
|
158 % or create it from scratch. (Matlab requires this.)
|
wolffd@0
|
159
|
wolffd@0
|
160 CPD.CPT = [];
|
wolffd@0
|
161 CPD.sizes = [];
|
wolffd@0
|
162 CPD.prior_type = [];
|
wolffd@0
|
163 CPD.dirichlet = [];
|
wolffd@0
|
164 CPD.adjustable = [];
|
wolffd@0
|
165 CPD.counts = [];
|
wolffd@0
|
166 CPD.nparams = [];
|
wolffd@0
|
167 CPD.nsamples = [];
|
wolffd@0
|
168 CPD.trim = [];
|
wolffd@0
|
169 CPD.trimmed_trans = [];
|
wolffd@0
|
170 CPD.leftright = [];
|
wolffd@0
|
171 CPD.entropic_pcases = [];
|
wolffd@0
|
172 CPD.sparse = [];
|
wolffd@0
|
173
|