annotate toolboxes/FullBNT-1.0.7/Kalman/smooth_update.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
rev   line source
wolffd@0 1 function [xsmooth, Vsmooth, VVsmooth_future] = smooth_update(xsmooth_future, Vsmooth_future, ...
wolffd@0 2 xfilt, Vfilt, Vfilt_future, VVfilt_future, A, Q, B, u)
wolffd@0 3 % One step of the backwards RTS smoothing equations.
wolffd@0 4 % function [xsmooth, Vsmooth, VVsmooth_future] = smooth_update(xsmooth_future, Vsmooth_future, ...
wolffd@0 5 % xfilt, Vfilt, Vfilt_future, VVfilt_future, A, B, u)
wolffd@0 6 %
wolffd@0 7 % INPUTS:
wolffd@0 8 % xsmooth_future = E[X_t+1|T]
wolffd@0 9 % Vsmooth_future = Cov[X_t+1|T]
wolffd@0 10 % xfilt = E[X_t|t]
wolffd@0 11 % Vfilt = Cov[X_t|t]
wolffd@0 12 % Vfilt_future = Cov[X_t+1|t+1]
wolffd@0 13 % VVfilt_future = Cov[X_t+1,X_t|t+1]
wolffd@0 14 % A = system matrix for time t+1
wolffd@0 15 % Q = system covariance for time t+1
wolffd@0 16 % B = input matrix for time t+1 (or [] if none)
wolffd@0 17 % u = input vector for time t+1 (or [] if none)
wolffd@0 18 %
wolffd@0 19 % OUTPUTS:
wolffd@0 20 % xsmooth = E[X_t|T]
wolffd@0 21 % Vsmooth = Cov[X_t|T]
wolffd@0 22 % VVsmooth_future = Cov[X_t+1,X_t|T]
wolffd@0 23
wolffd@0 24 %xpred = E[X(t+1) | t]
wolffd@0 25 if isempty(B)
wolffd@0 26 xpred = A*xfilt;
wolffd@0 27 else
wolffd@0 28 xpred = A*xfilt + B*u;
wolffd@0 29 end
wolffd@0 30 Vpred = A*Vfilt*A' + Q; % Vpred = Cov[X(t+1) | t]
wolffd@0 31 J = Vfilt * A' * inv(Vpred); % smoother gain matrix
wolffd@0 32 xsmooth = xfilt + J*(xsmooth_future - xpred);
wolffd@0 33 Vsmooth = Vfilt + J*(Vsmooth_future - Vpred)*J';
wolffd@0 34 VVsmooth_future = VVfilt_future + (Vsmooth_future - Vfilt_future)*inv(Vfilt_future)*VVfilt_future;
wolffd@0 35
wolffd@0 36